Monthly Archives: April 2016

Personal thermal vision could turn millions of students into the cleantech workforce of today

So we have signed the Paris Agreement and cheered about it. Now what?

More than a year ago, I wrote a proposal to the National Science Foundation to test the feasibility of empowering students to help combat the energy issues of our nation. There are hundreds of millions of buildings in our country and some of them are pretty big energy losers. The home energy industry currently employs probably 100,000 people at most. It would take them a few decades to weatherize and solarize all these residential and commercial buildings (let alone educating home owners so that they would take such actions).

But there are millions of students in schools who are probably more likely to be concerned about the world that they are about to inherit. Why not ask them to help?

You probably know a lot of projects on this very same mission. But I want to do something different. Enough messaging has been done. We don't need to hand out more brochures and flyers about the environmental issues that we may be facing. It is time to call for actions!

For a number of years, I have been working on infrared thermography and building energy simulation to knock down the technical barriers that these techniques may pose to children. With NSF awarding us a $1.2M grant last year and FLIR releasing a series of inexpensive thermal cameras, the time of bringing these tools to large-scale applications in schools has finally arrived.

For more information, see our poster that will be presented at a NSF meeting next week. Note that this project has just begun so we haven't had a chance to test the solarization part. But the results from the weatherization part based on infrared thermography has been extremely encouraging!

Listen to the data with the Visual Process Analytics

Visual analytics provides a powerful way for people to see patterns and trends in data by visualizing them. In real life, we use both our eyes and ears. So can we hear patterns and trends if we listen to the data?

I spent a few days studying the JavaScript Sound API and adding simple data sonification to our Visual Process Analytics (VPA) to explore this question. I don't know where including the auditory sense to the analytics toolkit may lead us, but you never know. It is always good to experiment with various ideas.

Note that the data sonification capabilities of VPA is very experimental at this point. To make the matter worse, I am not a musician by any stretch of the imagination. So the generated sounds in the latest version of VPA may sound horrible to you. But this represents a step forward to better interactions with complex learner data. As my knowledge about music improves, the data should sound less terrifying.

The first test feature added to VPA is very simple: It just converts a time series into a sequence of notes and rests. To adjust the sound, you can change a number of parameters such as pitch, duration, attack, decay, and oscillator types (sine, square, triangle, sawtooth, etc.). All these options are available through the context menu of a time series graph.

At the same time as the sound plays, you can also see a synchronized animation of VPA (as demonstrated by the embedded videos). This means that from now on VPA is a multimodal analytic tool. But I have no plan to rename it as data visualization is still and will remain dominant for the data mining platform.

The next step is to figure out how to synthesize better sounds from multiple types of actions as multiple sources or instruments (much like the Song from Pi). I will start with sonifying the scatter plot in VPA. Stay tuned.

What’s new in Visual Process Analytics Version 0.3

Visual Process Analytics (VPA) is a data mining platform that supports research on student learning through using complex tools to solve complex problems. The complexity of this kind of learning activities of students entails complex process data (e.g., event log) that cannot be easily analyzed. This difficulty calls for data visualization that can at least give researchers a glimpse of the data before they can actually conduct in-depth analyses. To this end, the VPA platform provides many different types of visualization that represent many different aspects of complex processes. These graphic representations should help researchers develop some sort of intuition. We believe VPA is an essential tool for data-intensive research, which will only grow more important in the future as data mining, machine learning, and artificial intelligence play critical roles in effective, personalized education.

Several new features were added to Version 0.3, described as follows:

1) Interactions are provided through context menus. Context menus can be invoked by right-clicking on a visualization. Depending on where the user clicks, a context menu provides the available actions applicable to the selected objects. This allows a complex tool such as VPA to still have a simple, pleasant user interface.

2) Result collectors allow users to gather analysis results and export them in the CSV format. VPA is a data browser that allows users to navigate in the ocean of data from the repositories it connects to. Each step of navigation invokes some calculations behind the scenes. To collect the results of these calculations in a mining session, VPA now has a simple result collector that automatically keeps track of the user's work. A more sophisticated result manager is also being conceptualized and developed to make it possible for users to manage their data mining results in a more flexible way. These results can be exported if needed to be analyzed further using other software tools.

3) Cumulative data graphs are available to render a more dramatic view of time series. It is sometimes easier to spot patterns and trends in cumulative graphs. This cumulative analysis applies to all levels of granularity of data supported by VPA (currently, the three granular levels are Top, Medium, and Fine, corresponding to three different ways to categorize action data). VPA also provides a way for users to select variables from a list to be highlighted in cumulative graphs.

Many other new features were also added in this version. For example, additional information about classes and students are provided to contextualize each data set. In the coming weeks, the repository will incorporate data from more than 1,200 students in Indiana who have undertaken engineering design projects using our Energy3D software. This unprecedented large-scale database will potentially provide a goldmine of research data in the area of engineering design study.

For more information about VPA, see my AERA 2016 presentation.