Author Archives: The Concord Consortium

New Grant to Improve Assessment and Instruction in Elementary Science Classrooms

Eighteen states and the District of Columbia, representing more than a third of the U.S. student population, have adopted the Next Generation Science Standards (NGSS) since their release in 2013, and more are expected to follow. To make the most of NGSS, teachers need three-dimensional assessments that integrate disciplinary core ideas, crosscutting concepts, and science and engineering practices.

We are delighted to collaborate with the Learning Sciences Research Institute at the University of Illinois at Chicago and UChicago STEM Education on a new grant funded by the National Science Foundation to build teacher capacity and develop and test classroom assessments for formative use that will promote high-quality science instruction and student learning in grades 3-5. These assessments will enable students to put their scientific knowledge into use through engaging in science practices and provide teachers with insight into students’ ability to address specific three-dimensional NGSS standards.

The project will work with teachers and other experts to co-develop formative assessment tasks and associated rubrics, and collect data for evidence-based revision and redesign of the tasks. As teachers are using the assessment tasks in their classrooms, the project will study their usage to further refine teacher materials and to collect evidence of instructional validity. The project will also develop teacher support materials and foster a community around use of the assessment tasks. The goal is to build the capacity of teachers to implement and respond formatively to assessment tasks that are diagnostic and instructionally informative.

The project will seek to answer two research questions:

  • How well do these assessments function with respect to aspects of validity for classroom use, particularly in terms of indicators of student proficiency, and tools to support teacher instructional practice?
  • In what ways do providing these assessment tasks and rubrics, and supporting teachers in their use, advance teachers’ formative assessment practices to support multi-dimensional science instruction?

 

 

 

 

CODAP Helps Students in Puerto Rico Understand the Effects of Extreme Weather

Students in the Luquillo Schoolyard Project in Puerto Rico are jamming on data. Large, long-term environmental data! And our free, online tool CODAP (Common Online Data Analysis Platform) joined their Data Jam to help students visualize and explore data in an inquiry-oriented way.

El Yunque National Forest, the only tropical rainforest in the U.S. National Forest System, was hit hard in 2017 by Hurricane Maria. (Photo courtesy of U.S. Forest Service.)

Data has become increasingly critical to understanding countless issues from business and politics to medicine and the environment. It’s hard to imagine a profession in the future that will not require data analysis skills. But while the Next Generation Science Standards (NGSS) feature data analysis and interpretation as part of the science and engineering practices, it’s hard for teachers to develop realistic activities using large datasets.

The Luquillo Schoolyard Project has developed a unique way to engage teachers and their students in local environmental issues while learning about big data, science, and research—and they draw and sing, too—all part of a Data Jam!

Data Jam is an outreach project of the National Science Foundation-funded Luquillo Long-Term Ecological Research (LTER) program in the El Yunque tropical rainforest. Students in a Data Jam work together on real data analysis projects, learning to formulate research questions, explore, analyze, and summarize environmental data, and come up with interpretations.

Students using CODAP to investigate environmental data from El Yunque National Forest during a Data Jam. (Photo: Noelia Báez Rodríguez)

Having recently experienced a drought followed by a Category 4 hurricane, Puerto Rico’s middle and high school students know firsthand the impact of weather on the environment. “It’s extremely impressive how resilient these kids are,” said Steven McGee, research associate professor of learning sciences at Northwestern University and president of The Learning Partnership, during a recent Concord Consortium data science education webinar. “We have kids whose school doesn’t have electricity, but they’re so devoted to science that they are coming out to the rainforest to do research.”

Led by teachers who have completed professional development training, students dive into authentic long-term research data from the Luquillo LTER, the Luquillo Critical Zone Observatory, and the U.S. Geological Survey. “Giving students real scientific datasets to explore introduces the messiness of data analysis that motivates the reasons why students should be engaging in basic data analysis strategies,” says McGee. “If students are only exposed to artificial datasets, the learning of basic analysis techniques seems like school exercises.”

Originally the project used Excel to created graphs, but they recently switched to CODAP, our web-based data analysis and visualization tool. “CODAP provides a platform for students to explore different ways to analyze the data,” McGee explains. “It’s easy for students to generate different types of graphs as a means to examine the data from different perspectives. This feature hopefully enables students to reflect on the type of information that can be gleaned from different types of graphs.”

A student presents her research data at the annual student symposium at the University of Puerto Rico. (Photo: Carla López Lloreda)

Successful Data Jam projects present their findings at a public symposium and poster session at the University of Puerto Rico. “A large number of scientists involved with the LTER program come and interact with the kids,” said Noelia Báez Rodríguez, coordinator of the Luquillo LTER Schoolyard program, during the webinar. Students also develop creative ways to communicate their results, including skits, drawings, short stories, poems, and songs—even a rap.*

If their goal is to get students interested in STEM careers, the Luquillo Schoolyard Project has a lot to jam about. Even in the midst of an ongoing environmental crisis, they’re getting students and teachers excited about data science. We’re proud to be a part of their success.

*By students Paul Ortiz and Jonathan Rodriguez as part of the 2016 Data Jam.

 

3 Reasons to Vote in STEM For All Video Showcase

We’re thrilled to present three videos in the National Science Foundation STEM for All Video Showcase from May 14 to 21! We invite you to view the videos and join the conversation about research projects that are transforming the STEM educational landscape. Please vote for our videos through Facebook, Twitter, or email!

Geniventure

Geniventure

Geniventure is a free online game with an Intelligent Tutoring System that engages students from middle school through higher education in genetics and heredity by saving virtual dragons from extinction. Through scaffolded virtual investigations, students explore the physical traits that result from allele combinations, then zoom into cells and manipulate the proteins that ultimately give rise to those traits.

Watch & Vote


InSPECT

Integrating Computational Thinking and Experimental Science

InSPECT supports the integration of computational thinking (CT) in experimental science with a novel technology-enhanced curriculum, and examines how students engage in CT using these tools for inquiry. InSPECT is designing a series of open-ended high school biology experiments using inexpensive DIY lab instruments developed in partnership with Manylabs, including Dataflow—a digital tool for experimental control and data acquisition using Internet-of-Things sensors.

Watch & Vote


Teaching Environmental Sustainability with Model My Watershed

With our collaborators at  and Stroud Water Research Center, we’re developing interdisciplinary, place-based, problem-based, hands-on resources and models aligned to NGSS to promote watershed stewardship, geospatial literacy, and systems thinking. We’re introducing middle and high school students to environmental and geospatial science that engenders critical incidents and encourage students to pursue environmental and geoscience careers.

Watch & Vote

National Teacher Appreciation Day & High-Adventure Science: Preparing students for real-world problems

“Thinking is hard work,” laughs Stephanie Harmon, who teaches physics, Earth science, and physical science at Rockcastle County High School in Kentucky. One of her primary goals is teaching students to think.“So much happens to us on a daily basis that we take for granted as long as everything is going okay,” she says. “What happens when something goes wrong? How do we make sense of that? What do we do about it? Science helps us foster critical thinking and problem-solving capacity . . . But you have to build that capacity in students. Science does that.”

In 2013, when she was looking for some robust Earth science materials, and wasn’t finding any, Stephanie discovered High-Adventure Science (HAS) and became a field-test teacher. “It was a relief,” she says. “There isn’t anything I could do in a traditional fashion that would even begin to mimic the experience that the students have using this.”

Water issues are real in her Kentucky community where there’s a serious problem with algae growth in the city water supply. Her class used the HAS fresh water module to guide collection of samples from a creek that runs through the high school property. “The module fits in with the big picture. It wasn’t just reading a bunch of articles about water quality, or looking to see what the book said. It became real.”

Photo by Amy Wallot/Kentucky Department of Education

Stephanie is consciously preparing students for issues they will face as adults: energy issues, water issues, clean air issues. “It can’t just be a school thing,” she insists. “The purpose of taking science classes is to be scientifically literate. What that means is you understand those common experiences that we all have: if you’re called to jury duty, you know how to make sense of forensic data; if you’re in the doctor’s office and you get a series of lab results, you know how to make sense of that information; when your neighbors detect radon gas in their basement, what does that mean you need to do? Those are the types of things we need to know, and that’s what scientifically literate means to me.”

From 2010-2013 Stephanie worked on the team that reviewed the Kentucky Next Generation Science Standards. In 2014 she won the Kentucky Science Teacher Association’s Outstanding High School Science Teacher award. And since 2016 she has been part of the team that developed a 3D NGSS state science assessment. During the 2018 NSTA national conference in Atlanta, she talked to a packed room about scientific argumentation and modeling using High-Adventure Science. We’re gratified that such an accomplished teacher uses our STEM resources.

Happy Teacher Appreciation Day to Stephanie and all teachers!

* * *

High-Adventure Science addresses big issues in Earth and space science: climate change, fresh water, land management, clean air, and more. It emphasizes the excitement of scientific discovery using the same methods that practicing scientists use so students can see science as a dynamic, evolving process. HAS lessons and interactives are available free online, including some in Spanish. They are also on the National Geographic Education website.

14 Chances at NSTA 2018 to Learn about Our Work

Are you attending the 2018 NSTA annual conference in Atlanta March 15-18? We’re leading 10 presentations at the Georgia World Congress Center (GWCC) and the Omni Atlanta Hotel at the CNN Center and one short course at the Westin Peachtree Plaza Hotel. Something for everyone, from modeling science in kindergarten to data science education. Join us for one or more sessions. We’re giving out free STEM resources for K-14! Schedule is below.

Calling all teachers! We want to talk with you at #NSTA18. Tell us what you like about our STEM resources and what could be improved. Don’t miss this chance to give us a piece of your mind! Please complete this short survey to register your interest in connecting with us. We’ll contact you to arrange a short meeting in Atlanta.

You can also tweet your thoughts to @ConcordDotOrg or email projects@concord.org.

THURSDAY, March 15

8:00-9:00 AM, GWCC, A401
“Sensing Science Through Modeling Matter for Kindergarten Students”
Discover models, probes, and online interactive stories.

12:30-1:00 PM, GWCC, A410
“Argumentation and Modeling in Earth Science Using Free Online Modules”
Free Earth system and environmental science simulations and curricula.

3:00-6:00 PM, Westin Peachtree Plaza Hotel, Chastain C
SHORT COURSE SC-1: If You Can Think It, You Can Model It
Use our popular SageModeler for modeling complexity and examining behavior.
You can purchase tickets online for this course.

5:00–6:00 PM, GWCC, A408
“Using Models to Support STEM Learning in Grades K–5: Examples and Insights from NSF’s DRK–12 Program”
Discussion centers on research-based examples of how students can engage in modeling in the elementary grades.

FRIDAY, March 16

8:00 AM, GWCC, A301
“Precipitating Change: Embedding Weather into the Middle School Science Classroom”
Everybody has weather! Make meteorology part of STEM learning.

8:00 AM, GWCC, A402
“Using Models to Support STEM Learning in Grades 6-12: Examples and Insights from NSF DRK-12 Program”
What does the research say about modeling practice?

9:30 AM, GWCC, C213
“Powerful Free Simulations for 3-D NGSS Teaching”
Free tips and resources for molecular simulations and curricula.

9:30 AM, GWCC, A301
“Teaching Environmental Sustainability Using a Free Place-Based Watershed Model”
Explore your local watershed with a web-based application.

2:00 PM, GWCC, B102
“NGSS@NSTA Forum Session: Interactions – A Free 3-D Science Curriculum for 9th Grade Physical Science
Atoms and molecules are the foundation to explaining scientific and everyday phenomena.

4:00 PM, Dantanna’s Downtown, One CNN Center, Suite 269
Join our informal Data Science Education Meetup. Get a bite to eat and talk with others about how to empower students with data science skills. And don’t miss tomorrow’s 9:30 AM presentation on data science and CODAP. RSVP dset@concord.org

5:00–6:00 PM, GWCC A301
“Model My Watershed: Using Real Data to Make Watershed Decisions”
Learn about an exciting free online modeling application that gives anyone the ability to use STEM practices to explore their local watershed.

SATURDAY, March 17

9:30 AM, Omni Atlanta Hotel at the CNN Center, Dogwood A
“Introducing Students to Data Science with Simulations & Interactive Graphing”
No coding required! Learn about CODAP (Common Online Data Analysis Platform), a free online tool for data analysis.

12:30 PM, GWCC, A313
“Systems Thinking, Modeling and Climate Change”
Explore a free, open-source modeling tool for climate change. Free e-book, too!

2:00 PM, GWCC, C206
“Liven Up Your Labs with Free 3-D Learning Tools and Resources”
Learn science by doing science. Adapt your labs using new tools.

Computational Thinking in Biology: What is an InSPECT Dataflow Diagram?

Integrating computational thinking into core science content and practices is a major goal of our InSPECT project, which is developing hands-on high school biology investigations using simple electronic sensors with Internet of Things (IoT) connectivity—a far cry from the simple germination experiments students usually encounter.

An article in the Fall 2017 Concord Consortium newsletter (“Science Thinking for Tomorrow Today”) describes the overall InSPECT project. Let’s take a closer look at a unique and powerful component of the project: virtual programming using a dataflow diagram.

The Dataflow interface enables students to do virtual programming within the browser-based interface. 

Dataflow diagrams have been around since the 1970s. They’re a visual model of the “flow” of data through a system. InSPECT has created a diagramming environment called Dataflow, the first version of which was developed in partnership with Peter Sand at Manylabs, that is much more than boxes and arrows on a page; components come alive when wirelessly synced to sensors, whose numerical data are displayed on the screen in real time as it’s recorded.

An eco-column activity includes sensors plugged into a Raspberry Pi computer. Dataflow automates data collection and initiates actions, such as raising or lowering temperature.

InSPECT is piloting an eco-column activity that includes electronic sensors plugged into a low-cost Raspberry Pi computer the size of a credit card. The sensors collect data about conditions inside the eco-column chambers, such as humidity and oxygen levels, sending it wirelessly over the Internet to Dataflow, which can automate data collection 24 hours a day, uninterrupted and unattended.

With the addition of actuators, Dataflow also can be programmed to create actions based on the sensor data. Students control the real-world actuators by defining variables and setting up conditionals that are entered directly into Dataflow’s simple, visual interface, which can run in any browser on a Mac or PC platform. For example, students can program a Dataflow diagram to adjust the current to a Peltier cooler in order to tweak the temperature of an eco-chamber when the sensor reading becomes too low or too high.

Finally, students can visualize, analyze, and interpret their data by exporting it to one of Concord Consortium’s most popular tools, CODAP (Common Online Data Analysis Platform), a free web-based environment for data analysis. Dataflow can be embedded directly into CODAP.

The use of sensor technology is still new to many biology classes, but our early research is based on the idea that when students collect data in real time, they make a powerful connection to the concepts they are studying. Using Dataflow, students not only learn to design the experiment and control the variables, they come to understand dynamic ecological systems.

The InSPECT project is currently recruiting biology teachers for our fall 2018 and spring 2019 studies. Our goal is to explore how to support integrated science practices and computational thinking in biology. We have several labs to select from involving photosynthesis, respiration, seed germination, and/or plant growth in chambers that can be from three classes to four weeks long. If you’re interested, contact us at inspect@concord.org.

Concord Consortium Publishes Important Research in Educational Technology

Nine publications illuminate our research in educational technology in 2017. Learn about engineering design tools that may help bridge the design-science gap (#5), a systems modeling tool that supports students in the NGSS practice of developing and using models and the crosscutting concept of systems (#1), an Earth science curriculum that increases student scientific argumentation abilities (#6), the relative ease of creating hierarchical data structures (#9), automated analysis of collaborative problem solving in electronics (#8), and more.

1. New systems modeling tool supports students

The NGSS identify systems and system models as one of the crosscutting concepts, and developing and using models as one of the science and engineering practices. However, students do not naturally engage in systems thinking or in building models to make sense of phenomena. The Concord Consortium and Michigan State University developed a free, web-based, open-source systems modeling tool called SageModeler and a curricular approach designed to support students and teachers in engaging in systems modeling.

Damelin, D., Krajcik, J., McIntyre, C., & Bielik, T. (2017). Students making system models: An accessible approach. Science Scope, 40(5), 78-82.

2. Students should face the unknown and engage in frontier science questions

Students should see science as an ongoing process rather than as a collection of facts. Six High-Adventure Science curriculum modules provide an opportunity to bring contemporary science and the process of doing science into the classroom. Interactive, dynamic models help students make sense of complex Earth systems. Embedded assessments prompt students to interpret data to make scientific arguments and evaluate claims while considering the uncertainty inherent in frontier science.

Pallant, A. (2017). High-Adventure Science: Exploring evidence, models, and uncertainty related to questions facing scientists today. The Earth Scientist, 33, 23-28.

3. Automated feedback helps students write scientific arguments

Automated scoring and feedback support students’ construction of written scientific arguments while learning about factors that affect climate change. Results showed that 77% of students made revisions to their open-ended argumentation responses after receiving feedback. Students who revised had significantly higher final scores than those who did not, and each revision was associated with an increase on the final scores.

Zhu, M., Lee, H.-S., Wang, T., Liu, O. L., Belur, V., & Pallant, A. (2017). Investigating the impact of automated feedback on students’ scientific argumentation. International Journal of Science Education, 1–21.

4. Review of research on women’s underrepresentation in computing fields

This literature review synthesizes research on women’s underrepresentation in computing fields across four life stages: 1) pre-high school; 2) high school; 3) college major choice and persistence; and 4) postbaccalaureate employment. Access to and use of computing resources at the pre-high school and high school levels are associated with gender differences in interest and attitudes toward computing. In college, environmental context contributes to whether students will major in computing, while a sense of belonging and self-efficacy as well as departmental culture play a role in persistence in computing fields. Work-life conflict, occupational culture, and mentoring/networking opportunities play a role in women’s participation in the computing workforce.

Main, J. B., & Schimpf, C. (2017). The underrepresentation of women in computing fields: A synthesis of literature using a life course perspective. IEEE Transactions on Education, 60(4), 296-304.

5. Students improve knowledge by designing with robust engineering tools

Eighty-three 9th grade students completed an energy-efficient home design challenge using our Energy3D software. Students substantially improved their knowledge. Their learning gains were positively associated with three types of design actions—representation, analysis, and reflection—measured by the cumulative counts of computer logs. These findings suggest that tools are not passive components in a learning environment, but shape design processes and learning paths, and offer possibilities to help bridge the design-science gap.

Chao, J., Xie, C., Nourian, S., Chen, G., Bailey, S., Goldstein, M. H., Purzer, S., Adams, R. S., & Tutwiler, M. S. (2017). Bridging the design-science gap with tools: Science learning and design behaviors in a simulated environment for engineering design. Journal of Research in Science Teaching, 54(8), 1049-1096.

6. Students improve their scientific argumentation skills

Making energy choices means considering multiple factors, exploring competing ideas, and reaching conclusions based on the best available evidence. Our High-Adventure Science project created a free online energy module in which students compare the effects of energy sources on land use, air quality, and water quality using interactive models, real-world data on energy production and consumption, and scaffolded argumentation tasks. We analyzed pre- and post-test responses to argumentation items for 1,573 students from three middle schools and seven high schools. Students significantly improved their scientific argumentation abilities after using the energy module.

Pallant, A., Pryputniewicz, S. & Lee, H-S. (2017). The future of energy. The Science Teacher, 84(3), 61-68.

7. Students learn about sustainability

Educators must figure out how to prepare students to think about complex systems and sustainability. We elucidate a set of design principles used to create online curriculum modules related to Earth’s systems and sustainability and give examples from the High-Adventure Science module “Can we feed the growing population?” The module includes interactive, computer-based, dynamic Earth systems models that enable students to track changes over time. Embedded prompts help students focus on stocks and flows within the system, and identify important resources in the models, explain the processes that change the availability of the stock, and explore real-world examples.

Pallant, A., & Lee, H. S. (2017). Teaching sustainability through systems dynamics: Exploring stocks and flows embedded in dynamic computer models of an agricultural system. Journal of Geoscience Education, 65(2), 146-157.

8. Automated analysis sheds light on collaborative problem solving

The Teaching Teamwork project created an online simulated electronic circuit, running on multiple computers, to assess students’ abilities to work together as a team. Modifications to the circuit made by any team member, insofar as they alter the behavior of the circuit, can affect measurements made by the others. We log all relevant student actions, including calculations, measurements, online student communications, and alterations made by the students to the circuit itself. Automated analysis of the resulting data sheds light on the problem-solving strategy of each team.

Horwitz, P., von Davier, A., Chamberlain, J., Koon, A., Andrews, J., & McIntyre, C. (2017). Teaching Teamwork: Electronics instruction in a collaborative environment. Community College Journal of Research and Practice, 41(6), 341-343.

9. Students understand how to structure data

In this study participants were presented with diagrams of traffic on two roads with information about eight attributes (e.g., type of vehicle, its speed and direction) and asked to record and organize the data to assist city planners in its analysis. Overall, 79% of their data sheets successfully encoded the data. Even 62% of the middle school students created a structure that could hold the critical information from the diagrams. Students were more likely to create nested data structures than they were to produce one flat table, suggesting that hierarchical structures might be more intuitive and easier to interpret than flat tables.

Konold, C., Finzer, W., & Kreetong, K. (2017). Modeling as a core component of structuring data. Statistics Education Research Journal, 16(2), 191-212.

The Concord Consortium’s Top 10 News Stories from 2017

The year 2017 was a significant one for the Concord Consortium. Even though we lost our founder—and an amazing friend, colleague, mentor, and collaborator—our memories of Robert Tinker and his work resonate in an enduring way. Not many people can say they’ve worked with a legend. But anyone who knew our beloved founder recognized they were in the presence of a brilliant mind and a person with genuine compassion. While Bob’s passing on June 21, 2017, is a source of sadness for us all, we honor his legacy every day through our work. Share your memory of how Bob inspired you (and read stories of the many people Bob inspired).

Here, we share our year’s top 10 news stories.

1. Data Science Education Leaps into the Future

We jump-started the new field of data science education to bring about effective learning with and about data. In February 2017 we convened the Data Science Education Technology conference in Berkeley, California—right next to our West Coast office—with over 100 thought leaders from organizations around the U.S. and six continents. We’ve also hosted over a dozen meetups and webinars since that seminal event. We’re planning our schedule for 2018 and invite you to help us bring about the data science education revolution.

2. We Publish Influential Research and Analysis

We published authoritative articles in the Earth Scientist, the International Journal of Science EducationIEEE Transactions on Education, the Journal of Research in Science Teaching, the Science Teacher, the Journal of Geoscience Education, the Community College Journal of Research and Practice, the Statistics Education Research Journal, and Science Scope. We’re looking forward to 2018, too, with several papers scheduled to be published in the New Year.

3. We Embraced Our Creative Side and Reached Out to You

We embraced our creative side, and collaborated with Blenderbox to create a website that invites users to explore our work and use our free digital resources. Two jam-packed newsletters offered visionary commentary as well as practical instruction. We expanded our blog, and reached out to many more of you through Twitter and Facebook. Keep your shares and comments coming.

Energy3D can be used to design four types of concentrated solar power plants: solar power towers, linear Fresnel reflectors, parabolic troughs, and parabolic dishes.

4. General Motors Awards $200,000 Grant

General Motors is committed to powering its worldwide factories and offices with 100% renewable energy by 2050. The company furthered its commitment by awarding the Concord Consortium a $200,000 grant to promote engineering education using renewable energy as a learning context and artificial intelligence as a teaching assistant. The project will use our signature Energy3D software, an easy-to-use CAD tool for designing and simulating solar power systems.

5. What a Busy Year Presenting on the Road

We presented our free resources and research at over 25 sessions at NSTA, NARST, AERA, ISTE, BLC, American Society for Engineering Education, NSTA STEM Forum & Expo, MAST, EdSurge, International Dialogue on STEM 2017, and ISDDE2017, plus the Global Education & Skills Forum in Dubai and the International Conference on Tangible, Embedded, and Embodied Interactions in Japan. Phew! At AERA 2018 we’ll host a special session to honor the work and legacy of Bob Tinker called “Deeply Digital Learning: The Influence of Robert Tinker on STEM Education and the Learning Sciences.”

Students can explore and evaluate the condition of their local watershed using the free, web-based Model My Watershed application.

6. We Won!

Congratulations to the WikiWatershed online toolkit, which includes the Model My Watershed app developed in collaboration with the Stroud Water Research Center. It was awarded the 2017 Governor’s Award for Environmental Excellence by the Pennsylvania Department of Environmental Protection. And our Water SCIENCE project won a facilitators’ choice award in the National Science Foundation’s STEM for All Video Showcase.

7. We Partnered with Publishers to Bring STEM Inquiry Activities to More Students

  • We continued our partnership with McGraw-Hill Education to create engaging simulations for their Inspire Science elementary science curriculum. These simulations allow students to explore questions in ways that scientists and engineers do, and cover a variety of topic areas in K-5 science.
  • We incorporated our Next-Generation Molecular Workbench into PASCO’s Essential Chemistry textbook as fully interactive simulations that challenge students to explore topics in chemistry such as chemical reactions and particle motion.

If you’re interested in creating a groundbreaking STEM curriculum or pursuing an innovative new idea together, we’re excited to explore the possibilities with you.

     

8. Twenty-four Hours of Pandemonium and Prototypes

Our East and West Coast offices got together in July for a “FedEx day,” so called because the goal is to develop a blizzard of new prototypes and innovations in 24 hours and deliver them overnight! We developed prototypes for blocks-based programming in augmented reality (imagine Scratch/StarLogo, but with printable blocks that connect like puzzle pieces); a collaborative ecology game based on a tangible user interface; an internal project dashboard (think Intranet on steroids); an agent-based convection model; a way to connect real-time sensor data from our offices directly into our data exploration tool CODAP; and an open-source editor for activity transcripts. Plus President Chad Dorsey got out his power tools and built a picnic table that turns into a bench — almost Transformer-worthy.

    

   

9. Six New Employees Sign On

We welcomed six fabulous new employees in our Concord, MA, and Emeryville, CA, offices: Tom Farmer, Lisa Hardy, Eli Kosminsky, Andrea Krehbiel, Joyce Massicotte, and Judi Raiff. Want to join our growing family? We’re hiring!

10. Thirty-One Projects Research and Develop Educational Technology and Curriculum

Through 31 research projects with countless amazing collaborators, we’re extending our pioneering work in the field of probeware and other tools for inquiry and continuing to develop award-winning STEM models and simulations. We’re taking the lead in new areas, including data science education, analytics and feedback, and engineering and science connections. And we’re exploring and creating cutting-edge new tools and technologies for tomorrow’s learners in our innovation lab.

UMass Amherst students contribute to dragon genome project

Can dragons get cancer? Students in Dr. Ludmila Tyler’s Biochemistry Molecular Genetics and Genomics course at the University of Massachusetts, Amherst asked this question last semester. As part of their course work, they used our Geniverse software to study dragon genetics and develop new genes, mutant alleles, and phenotypes based on investigations of scientific literature. They imagined the genotypic and phenotypic possibilities for the fictional drake, the model species in Geniverse. Drakes are essentially miniature dragons, so students can take what they learn about drakes and apply it to dragons just as scientists study model species like mice to learn about human genetic disease.

We recently revealed the science behind the genes of Geniverse. Thanks to Dr. Tyler’s students, the dragon genome has the potential to expand in exciting ways.

  • Some drakes now have a high-frequency acoustic sensitivity, which gives them the ability to navigate and forage using sound waves—thanks to research conducted by Nicholas Fordham and Thomas Riley Potter. They focused on the SLC26A5 gene, which encodes Prestin, a protein that functions in the membrane of cochlear outer hair cells and is involved in auditory function. In bats and dolphins, a change in one amino acid in the Prestin protein allows for echolocation.
  • A form of dwarfism called achondroplosia was introduced to the drake genome by Brian Kim, Danny McSweeney, and Jared Stone. The group identified research showing a connection between short-limbed dwarfism and one altered amino acid in the FGFR3 transmembrane protein receptor expressed in bone-building cells. They created a drake with short stature due to a heterozygous genotype, containing a single mutated allele; the wild-type homozygous recessive genotype would result in an average-sized drake while a homozygous dominant genotype would result in the death of the drake offspring.
  • The MaSp1 gene now enables drakes to secrete and shoot silk from their mouths (for example, to capture prey or build a home). Brandon Hancock and Mitch Kimber researched the MaSp1 fibroin protein across several spider species to look for areas of gene conservation.
  • Drakes may now be resistant to cancerous tumors, thanks to research by Evan Smith and Kaitlyn Barrack, who added the TP53 tumor-suppressor gene. The gene encodes the p53 protein, which acts as a major tumor suppressant in many different organisms.

We’re excited that these students and other members of the class have extended the database of drake genes, and we’d love to be able to incorporate them in Geniverse software in the future.

Try Geniverse now. What additions to the dragon genome would you like to see?

Learn about two Concord Consortium projects at EdSurge Fusion Conference

Bill Finzer and Sherry Hsi will both present at the EdSurge Fusion Conference in Burlingame, California, near our Emeryville office.

The Common Online Data Analysis Platform—Getting more students in more classrooms to do more with data

William Finzer
Thursday, November 2
12:00 – 1:00 PM

CODAP is a free web-based data tool designed as a platform for developers and as an application for students in grades 6–14. Designed with learning in mind, CODAP continues the legacy of the award-winning software packages Fathom and TinkerPlots. It builds on a decades-long legacy of research into interactive environments encouraging exploration, play, and puzzlement. CODAP is about exploring and learning from data from any content area—from math and science to social studies or physical education!

The data set in CODAP has information on 27 mammals, including humans! Learn more by examining the tables and graphs.

Computationally-Enhanced Papercrafts for Engineering Education

Sherry Hsi
Thursday, November 2
12:00 – 1:00 PM

Paper Mechatronics is a novel design medium integrating traditional educational papercrafts with mechanical design, electronic engineering, and computational thinking. Paper mechatronics makes possible a craft-oriented approach to engineering and computing education that integrates key concepts from mechanical engineering, electrical engineering, control systems, and computer programming, while using paper as the primary material for learner design, exploration, and inquiry.

Watch how to create your own devices from cardboard – machines, robots, toys, automata, kinetic artwork – that move!