Author Archives: The Concord Consortium

By Popular Demand: Printable NGSS Pathfinder

The Next Generation Science Standards (NGSS) provide a framework and examples of three-dimensional learning. Soon after they were released, we created the NGSS Pathfinder to help educators find their way through the core ideas, crosscutting concepts, and science and engineering practices that make up the NGSS. This intuitive tool allows you to consider some of the myriad paths possible, and links to free Concord Consortium resources for any given path.

NGSS Pathfinder

We’ve had lots of positive feedback about the NGSS Pathfinder, including many requests for a printable version. And since we love to give educational resources away for free, we’ve made a printable version of the Pathfinder available. Feel free to use it for handouts, full-size posters, or anything else. We’re especially excited about the idea of people creating laminated posters so they can draw their own paths!

As always, you can continue to use the online NGSS Pathfinder to create interactive links from core ideas to science and engineering practices and crosscutting concepts, and get access to free resources for your selected path. Our computational models and probe-based activities bring important learning within new reach. Students using such technology-based activities also gain wide experience with crosscutting concepts—from scales in space and time to energy and systems—across domains in science, math, and engineering.

The NGSS Pathfinder graphics are licensed under the Creative Commons Attribution 4.0 license (CC BY 4.0), so you’re welcome to use them under those terms. If you share the graphics online, please attribute the Concord Consortium and include a link to https://concord.org.

5 Reasons to Vote in STEM For All Video Showcase

We’re thrilled to present five videos in the National Science Foundation STEM for All Video Showcase from May 17 to 23! We invite you to view the videos and join the conversation about the latest research in STEM and computer science teaching and learning. Please vote for our videos through Facebook, Twitter, or email!

CODAPCODAP

Data are everywhere, except in the classroom! Learn how our Common Online Data Analysis Platform (CODAP) is bringing more rich experiences with data to more teachers and students.

Watch Now

Teaching TeamworkTeaching Teamwork

Collaboration is highly valued in the 21st century workplace. Our Teaching Teamwork project is measuring how effectively electronics students work in teams.

Watch Now

GeniverseGeniConnect & GeniGUIDE

Geniverse engages students in exploring heredity and genetics by breeding virtual dragons. GeniConnect connects afterschool students with biotech scientists to play Geniverse together. In GeniGUIDE, we’re adding an intelligent tutoring system to Geniverse, supporting students and relaying information to the most intelligent tutor in the room – the teacher.

Watch Now

Teaching Environmental Sustainability with Model My WatershedTeaching Environmental Sustainability
with Model My Watershed

Teaching Environmental Sustainability with Model My Watershed is developing place-based, problem-based, hands-on set tools aligned to NGSS to promote geospatial literacy and systems thinking for middle and high school students.

Watch Now

GRASPGRASP

GRASP (Gesture Augmented Simulations for Supporting Explanations) is investigating how middle school students use body movement to build deeper reasoning about critical science concepts.

Watch Now

Video: Under the Hood of Molecular Workbench

It takes a lot of computation to model the atomic and molecular world! Fortunately, modern Web browsers have 10 times the computational capacity and speed compared with just 18 months ago. (That’s even faster than Moore’s Law!) We’re now taking advantage of HTML5 plus JavaScript to rebuild Molecular Workbench models to run on anything with a modern Web browser, including tablets and smartphones.

Director of Technology Stephen Bannasch describes the complex algorithms that he’s been programming behind the scenes to get virtual atoms to behave like real atoms, forming gases, liquids and solids while you manipulate temperature and the attractive forces between atoms. See salt crystallize and explore how the intermolecular attractions affect melting and boiling points. Imagine what chemistry class would have been like (or could be like today) if the foundation of your chemical knowledge started here.

Technology and Curriculum Developer Dan Damelin goes on to describe how open source programming opens up possibilities. For instance, Jmol is a Java-based 3D viewer for chemical structures that we were able to incorporate into Molecular Workbench to allow people to easily build activities around manipulation of large and small molecules, and to make connections between static 3D representations and the dynamic models of how molecules interact. We’re planning to build a chemical structure viewer that won’t require Java and will extend another open source project based on JavaScript and WebGL to visualize molecules in a browser.

Interested in this innovative programming? Great! We’re looking for software developers.

Video: Three Views of Molecular Workbench

The Molecular Workbench has been downloaded over 800,000 times, making it Concord Consortium’s most popular single piece of software. We’re heading to a million and documenting in video both our history and our vision for the future.

Learn from Charles Xie, Senior Scientist and creator of the Molecular Workbench, about the computational engines that accurately simulate atomic motions, quantum waves, and atomic-scale interactions based on fundamental equations and laws in physics.

Amy Pallant, who researched student use of Molecular Workbench, describes the phone calls she made to students months after they’d used the software—and how impressed she was with their memory of the science of atoms and molecules.

Dan Damelin, Technology and Curriculum Developer, recalls his time as a classroom teacher and his frustration with trying to describe atoms and molecules to his students with words and pictures. He wanted more—and found it in Molecular Workbench!

Dan sums up the goal for Molecular Workbench: “It’s going to be just a given that this is a regular tool that will just be part of learning science.” We hope so.

We’re closing in on a million downloads and looking toward the next million.