Author Archives: Frieda Reichsman

An Edited Google Doodle and a Genetics Mini-Mystery

Google’s Doodle on January 9 honored Har Gobind Khorana, a Nobel laureate whose work with DNA, RNA, and protein synthesis was seminal to deciphering the genetic code. Did anyone besides us (shout out to our own Eli Kosminsky!) notice that, midway through the day, the cartoon changed?

Google Doodle in the morning…

 

The same Doodle at night!

A comparison shows that the letters vanished from the paired strands draped across the doodle, leaving the flag-like bases letterless. A look at the letters depicted in the original doodle’s strands shows the letter “U,” for the base uracil, on both sides, making the drawing look like two paired strands of RNA. It’s the paired RNA strands that was the problem, we surmise. RNA, unlike DNA, comprises a single strand of nucleotide bases or “letters,” not a double strand (which, in the case of DNA, twists into the classic double-helix shape). By labeling both strands of the molecule with RNA letters, the doodle effectively depicted RNA as an extended double-stranded molecule, which is incorrect.

Removing the letters allowed the doodle to be interpreted correctly as showing the transcription of RNA from DNA, which is not only biologically relevant, it’s also a critical component of Khorana’s work. In fact, part of Khorana’s approach involved assiduously avoiding the now-classic behavior of some RNA sequences that might have been unintentionally represented in the original doodle—a strand folding back on itself, base-pairing to form obstinate structures that can actually prevent the reading and translation of the code by cellular enzymes. In addition, synthesizing custom-coded RNA strands was much more difficult than synthesizing DNA strands, so part of the time, Khorana cleverly synthesized DNA strands and allowed the cellular enzymes to make the RNA strands for him.

You can explore how to decode the genetic code yourself using our DNA/RNA simulator!* How would you determine the number of bases (letters) in each DNA word? You can design DNA and RNA sequences that clearly answer this question, and then move on to figuring out how to use your own sequences to reveal the code.

Transcription

The process of transcription. Note that only the red RNA strand includes “U” for Uracil, so the original Doodle’s labels didn’t make sense.

Translation

The process of translation. Here, the top base pairs are passed in by tRNA, and don’t form a strand at all, so this doesn’t match the original Doodle either.

* This Next-Generation Molecular Workbench model was developed thanks to a generous grant from Google.org.

Digital gaming will connect afterschool students with biotech mentors

Our nation’s future competitiveness and our citizens’ overall STEM literacy rely on our efforts to forge connections between the future workforce and the world of emerging STEM careers. Biotechnology, and genetics in particular, are rapidly advancing areas that will offer new jobs across the spectrum from technicians to scientists. A new $1.2 million National Science Foundation-funded project at the Concord Consortium will use Geniverse, an immersive digital game where students put genetics knowledge into action as they breed dragons, to help connect underserved students with local biotechnology professionals to strengthen student awareness of STEM careers.

East End House Students

Students from East End House enjoy collaborating on computer-based science activities.

Geniverse is our free, web-based software designed for high school biology that engages students in exploring heredity and genetics by breeding and studying virtual dragons. This game-like software allows students to undertake genetics experimentation with results that closely mimic real-world genetics. The new GeniConnect project will extend the gaming aspects of Geniverse and revise the content to more fully target middle school biology, introducing Geniverse to the afterschool environment.

The three-year GeniConnect project will develop and research a coherent series of student experiences in biotechnology and genetics involving game-based learning, industry mentoring, and hands-on laboratory work. Industry professionals from Biogen, Monsanto, and other firms will mentor afterschool students at East End House, a community center in East Cambridge, Massachusetts.

With researchers from Purdue University, we’ll explore how an immersive game and a connection to a real scientist can increase STEM knowledge, motivation, and career awareness of underserved youth. We will also develop and research a scalable model for STEM industry/afterschool partnerships, and produce a STEM Partnership Toolkit for the development of robust, educationally sound partnerships among industry professionals and afterschool programs. The Toolkit will be distributed to approximately 500 community-based organizations and afterschool programs nationally that are member organizations of the Alliance for Strong Families and Communities.

Geniverse Narrative

Beautiful graphics designed by FableVision Studios engage students in a compelling narrative. Students follow the arduous journey of their heroic character and suffering dragon to the Drake Breeder’s Guild.

Geniverse Lab

Students are welcomed into the Drake Breeder’s Guild where they will learn the tricks of the genetic trade. (Drakes are a model species that can help solve genetic mysteries in dragons, in much the same way as the mouse is a model species for human genetic disease.) Students are engaging in an authentic, experiment-driven approach to biology—in a fantastical world.

Classrooms on fire…with dragon genetics!

No smoke and mirrors here: dragons are getting kids all fired up about genetics. Geniverse software engages students with compelling reasons to solve genetics problems. As they rise through the ranks of the Drake Breeders Guild, students win stars and quills for efficient experimentation and for using their own experimental results as evidence for their scientific claims. Watch how students are learning genetics while having fun—using Geniverse! Want to get your students fired up about genetics, too? Sign up to use Geniverse in your classroom next year.