Importing and analyzing models created by other CAD software in Energy3D: Part 2


Fig.1: The Gherkin (London, UK)
In Part I, I showed that Energy3D can import COLLADA models and perform some analyses. This part shows that Energy3D (Version 6.3.5 or higher) can conduct full-scale solar radiation analysis for imported models. This capability officially makes Energy3D a useful daylight and solar simulation tool for sustainable building design and analysis. Its ability to empower anyone to analyze virtually any 3D structure with an intuitive, easy-to-use interface and speedy simulation engines opens many opportunities to engage high school and college students (or even middle school students) in learning science and engineering through solving authentic, interesting real-world problems.
Fig. 2: Beverly Hills Tower (Qatar)

There is an ocean of 3D models of buildings, bridges, and other structures on the Internet (notably from SketchUp's 3D Warehouse, which provides thousands of free 3D models that can be exported to the COLLADA format). These models can be imported into Energy3D for analyses, which greatly enhances Energy3D's applicability in engineering education and practice.

Fig. 3: Solar analysis of various houses
The images in this post show examples of different types of buildings, including 30 St Mary Axe (the Gherkin) in London, UK (Figure 1) and the Beverly Hills Tower in Qatar (Figure 2). Figure 3 shows the analyses of a number of single-family houses. All the solar potential heat maps were calculated and generated based on the total solar radiation that each unit area on the building surfaces receive during the selected day (June 22).

These examples should give you some ideas about what the current version of Energy3D is already capable of doing in terms of solar energy analysis to support, for example, the design of rooftop solar systems and building solar facades.

In the months to come, I will continue to enhance this analytic capacity to provide even more powerful simulation and visualization tools. Optimization, which will automatically identify the boundary meshes (meshes that are on the building envelope), is currently on the way to increase the simulation speed dramatically.

Leave a Reply

Your email address will not be published. Required fields are marked *