Tag Archives: CAD

Time series analysis tools in Visual Process Analytics: Cross correlation

Two time series and their cross-correlation functions
In a previous post, I showed you what autocorrelation function (ACF) is and how it can be used to detect temporal patterns in student data. The ACF is the correlation of a signal with itself. We are certainly interested in exploring the correlations among different signals.

The cross-correlation function (CCF) is a measure of similarity of two time series as a function of the lag of one relative to the other. The CCF can be imagined as a procedure of overlaying two series printed on transparency films and sliding them horizontally to find possible correlations. For this reason, it is also known as a "sliding dot product."

The upper graph in the figure to the right shows two time series from a student's engineering design process, representing about 45 minutes of her construction (white line) and analysis (green line) activities while trying to design an energy-efficient house with the goal to cut down the net energy consumption to zero. At first glance, you probably have no clue about what these lines represent and how they may be related.

But their CCFs reveal something that appears to be more outstanding. The lower graph shows two curves that peak at some points. I know you have a lot of questions at this point. Let me try to see if I can provide more explanations below.

Why are there two curves for depicting the correlation of two time series, say, A and B? This is because there is a difference between "A relative to B" and "B relative to A." Imagine that you print the series on two transparency films and slide one on top of the other. Which one is on the top matters. If you are looking for cause-effect relationships using the CCF, you can treat the antecedent time series as the cause and the subsequent time series as the effect.

What does a peak in the CCF mean, anyways? It guides you to where more interesting things may lie. In the figure of this post, the construction activities of this particular student were significantly followed by analysis activities about four times (two of them are within 10 minutes), but the analysis activities were significantly followed by construction activities only once (after 10 minutes).

Time series analysis tools in Visual Process Analytics: Autocorrelation

Autocorrelation reveals a three-minute periodicity
Digital learning tools such as computer games and CAD software emit a lot of temporal data about what students do when they are deeply engaged in the learning tools. Analyzing these data may shed light on whether students learned, what they learned, and how they learned. In many cases, however, these data look so messy that many people are skeptical about their meaning. As optimists, we believe that there are likely learning signals buried in these noisy data. We just need to use or invent some mathematical tricks to figure them out.

In Version 0.2 of our Visual Process Analytics (VPA), I added a few techniques that can be used to do time series analysis so that researchers can find ways to characterize a learning process from different perspectives. Before I show you these visual analysis tools, be aware that the purpose of these tools is to reveal the temporal trends of a given process so that we can better describe the behavior of the student at that time. Whether these traits are "good" or "bad" for learning likely depends on the context, which often necessitates the analysis of other co-variables.

Correlograms reveal similarity of two time series.
The first tool for time series analysis added to VPA is the autocorrelation function (ACF), a mathematical tool for finding repeating patterns obscured by noise in the data. The shape of the ACF graph, called the correlogram, is often more revealing than just looking at the shape of the raw time series graph. In the extreme case when the process is completely random (i.e., white noise), the ACF will be a Dirac delta function that peaks at zero time lag. In the extreme case when the process is completely sinusoidal, the ACF will be similar to a damped oscillatory cosine wave with a vanishing tail.

An interesting question relevant to learning science is whether the process is autoregressive (or under what conditions the process can be autoregressive). The quality of being autoregressive means that the current value of a variable is influenced by its previous values. This could be used to evaluate whether the student learned from the past experience -- in the case of engineering design, whether the student's design action was informed by previous actions. Learning becomes more predictable if the process is autoregressive (just to be careful, note that I am not saying that more predictable learning is necessarily better learning). Different autoregression models, denoted as AR(n) with n indicating the memory length, may be characterized by their ACFs. For example, the ACF of AR(2) decays more slowly than that of AR(1), as AR(2) depends on more previous points. (In practice, partial autocorrelation function, or PACF, is often used to detect the order of an AR model.)

The two figures in this post show that the ACF in action within VPA, revealing temporal periodicity and similarity in students' action data that are otherwise obscure. The upper graphs of the figures plot the original time series for comparison.

Twelve Energy3D designs by Cormac Paterson

Cormac Paterson, a 17-years old student from Arlington High School in Massachusetts, has created yet another set of beautiful architectural designs using our Energy3D CAD software. The variety of his designs can be used to gauge the versatility of the software. His work is helping us push the boundary of the software and imagine what may be possible with the system.

This is the second year Cormac has worked with us as a summer intern. We are constantly impressed by his perseverance in working with the limitations of the software and around problems, as well as his ingenuity in coming up with new solutions and ideas. Working with Cormac has inspired us on how to improve our software so that it can support more students to do this kind of creative design. Our objective in the long run is to develop our software into a CAD system that is appropriate for children and yet capable of supporting authentic engineering design. Cormac's work might be an encouraging sign that we may actually be very close to realizing this goal.

Cormac also designed a building surrounded by solar trees. Solar tree is a concept that blends art and solar energy technology in a sculptural expression. An image of this post shows the result of the solar energy gains of these "trees" using the improved computational engine for solar simulation in Energy3D. 

Seeing student learning with visual analytics

Technology allows us to record almost everything happening in the classroom. The fact that students' interactions with learning environments can be logged in every detail raises the interesting question about whether or not there is any significant meaning and value in those data and how we can make use of them to help students and teachers, as pointed out in a report sponsored by the U.S. Department of Education:
New technologies thus bring the potential of transforming education from a data-poor to a data-rich enterprise. Yet while an abundance of data is an advantage, it is not a solution. Data do not interpret themselves and are often confusing — but data can provide evidence for making sound decisions when thoughtfully analyzed.” — Expanding Evidence Approaches for Learning in a Digital World, Office of Educational Technology, U.S. Department of Education, 2013
A radar chart of design space exploration.
A histogram of action intensity.
Here we are not talking about just analyzing students' answers to some multiple-choice questions, or their scores in quizzes and tests, or their frequencies of logging into a learning management system. We are talking about something much more fundamental, something that runs deep in cognition and learning, such as how students conduct a scientific experiment, solve a problem, or design a product. As learning goes deeper in those directions, data produced by students grows bigger. It is by no means an easy task to analyze large volumes of learner data, which contain a lot of noisy elements that cast uncertainty to assessment. The validity of an assessment inference rests on  the strength of evidence. Evidence construction often relies on the search for relations, patterns, and trends in student data.With a lot of data, this mandates some sophisticated computation similar to cognitive computing.

Data gathered from highly open-ended inquiry and design activities, key to authentic science and engineering practices that we want students to learn, are often intensive and “messy.” Without analytic tools that can discern systematic learning from random walk, what is provided to researchers and teachers is nothing but a DRIP (“data rich, information poor”) problem.

A scatter plot of action timeline.
Recognizing the difficulty in analyzing the sheer volume of messy student data, we turned to visual analytics, a whole category of techniques extensively used in cutting-edge business intelligence systems such as software developed by SAS, IBM, and others. We see interactive, visual process analytics key to accelerating the analysis procedures so that researchers can adjust mining rules easily, view results rapidly, and identify patterns clearly. This kind of visual analytics optimally combines the computational power of the computer, the graphical user interface of the software, and the pattern recognition power of the brain to support complex data analyses in data-intensive educational research.

A digraph of action transition.
So far, I have written four interactive graphs and charts that can be used to study four different aspects of the design action data that we collected from our Energy3D CAD software. Recording several weeks of student work on complex engineering design challenges, these datasets are high-dimensional, meaning that it is improper to treat them from a single point of view. For each question we are interested in getting answers from student data, we usually need a different representation to capture the outstanding features specific to the question. In many cases, multiple representations are needed to address a question.

In the long run, our objective is to add as many graphic representations as possible as we move along in answering more and more research questions based on our datasets. Given time, this growing library of visual analytics would develop sufficient power to the point that it may also become useful for teachers to monitor their students' work and thereby conduct formative assessment. To guarantee that our visual analytics runs on all devices, this library is written in JavaScript/HTML/CSS. A number of touch gestures are also supported for users to use the library on a multi-touch screen. A neat feature of this library is that multiple graphs and charts can be grouped together so that when you are interacting with one of them, the linked ones also change at the same time. As the datasets are temporal in nature, you can also animate these graphs to reconstruct and track exactly what students do throughout.

The National Science Foundation funds SmartCAD—an intelligent learning system for engineering design

We are pleased to announce that the National Science Foundation has awarded the Concord Consortium, Purdue University, and the University of Virginia a $3 million, four-year collaborative project to conduct research and development on SmartCAD, an intelligent learning system that informs engineering design of students with automatic feedback generated using computational analysis of their work.

Engineering design is one of the most complex learning processes because it builds on top of multiple layers of inquiry, involves creating products that meet multiple criteria and constraints, and requires the orchestration of mathematical thinking, scientific reasoning, systems thinking, and sometimes, computational thinking. Teaching and learning engineering design becomes important as it is now officially part of the Next Generation Science Standards in the United States. These new standards mandate every student to learn and practice engineering design in every science subject at every level of K-12 education.
Figure 1

In typical engineering projects, students are challenged to construct an artifact that performs specified functions under constraints. What makes engineering design different from other design practices such as art design is that engineering design must be guided by scientific principles and the end products must operate predictably based on science. A common problem observed in students' engineering design activities is that their design work is insufficiently informed by science, resulting in the reduction of engineering design to drawing or crafting. To circumvent this problem, engineering design curricula often encourage students to learn or review the related science concepts and practices before they try to put the design elements together to construct a product. After students create a prototype, they then test and evaluate it using the governing scientific principles, which, in turn, gives them a chance to deepen their understanding of the scientific principles. This common approach of learning is illustrated in the upper image of Figure 1.

There is a problem in the common approach, however. Exploring the form-function relationship is a critical inquiry step to understanding the underlying science. To determine whether a change of form can result in a desired function, students have to build and test a physical prototype or rely on the opinions of an instructor. This creates a delay in getting feedback at the most critical stage of the learning process, slowing down the iterative cycle of design and cutting short the exploration in the design space. As a result of this delay, experimenting and evaluating "micro ideas"--very small stepwise ideas such as those that investigate a design parameter at a time--through building, revising, and testing physical prototypes becomes impractical in many cases. From the perspective of learning, however, it is often at this level of granularity that foundational science and engineering design ultimately meet.

Figure 2
All these problems can be addressed by supporting engineering design with a computer-aided design (CAD) platform that embeds powerful science simulations to provide formative feedback to students in a timely manner. Simulations based on solving fundamental equations in science such as Newton’s Laws model the real world accurately and connect many science concepts coherently. Such simulations can computationally generate objective feedback about a design, allowing students to rapidly test a design idea on a scientific basis. Such simulations also allow the connections between design elements and science concepts to be explicitly established through fine-grained feedback, supporting students to make informed design decisions for each design element one at a time, as illustrated by the lower image of Figure 1. These scientific simulations give the CAD software tremendous disciplinary intelligence and instructional power, transforming it into a SmartCAD system that is capable of guiding student design towards a more scientific end.

Despite these advantages, there are very few developmentally appropriate CAD software available to K-12 students—most CAD software used in industry not only are science “black boxes” to students, but also require a cumbersome tool chaining of pre-processors, solvers, and post-processors, making them extremely challenging to use in secondary education. The SmartCAD project will fill in this gap with key educational features centered on guiding student design with feedback composed from simulations. For example, science simulations can be used to analyze student design artifacts and compute their distances to specific goals to detect whether students are zeroing in towards those goals or going astray. The development of these features will also draw upon decades of research on formative assessments of complex learning.

Modeling solar thermal power using heliostats in Energy2D

An array of heliostats in Energy2D (online simulation)
A new class of objects was added in Energy2D to model what is called a heliostat, a device that can automatically turn a mirror to reflect sunlight to a target no matter where the sun is in the sky. Heliostats are often used in solar thermal power plants or solar furnaces that use mirrors. With an array of computer-controlled heliostats and mirrors, the energy from the sun can be concentrated on the target to heat it up to a very high temperature, enough to vaporize water to create steam that drives a turbine to generate electricity.

Image credit: Wikipedia
The Ivanpah Solar Power Facility in California's Mojave Desert, which went online on February 13, 2014, is currently the world's largest solar thermal power plant. With a gross capacity of 392 megawatts, it is enough to power 140,000 homes. It deploys 173,500 heliostats, each controlling two mirrors.

A heliostat in Energy2D contains a planar mirror mounted on a pillar. You can drop one in at any location. Once you specify its target, it will automatically reflect any sunlight beam hitting on it to the target.

Strictly speaking, heliostats are different from solar trackers that automatically face the sun like sunflowers. But in Energy2D, if no target is specified, as is the default case, a heliostat becomes a solar tracker. Unlike heliostats, solar trackers are often used with photovoltaic (PV) panels that absorb, instead of reflecting, sunlight that shine on them. A future version of Energy2D will include the capacity of modeling PV power plants as well.

A stock-and-flow model for building thermal analysis

Figure 1. A stock-and-flow model of building energy.
Our Energy3D CAD software has two built-in simulation engines for performing solar energy analysis and building thermal analysis. I have extensively blogged about solar energy analysis using Energy3D. This article introduces building thermal analysis with Energy3D.

Figure 2. A colonial house.
The current version of the building energy simulation engine is based on a simple stock-and-flow model of building energy. Viewed from the perspective of system dynamics—a subject that studies the behavior of complex systems, the total thermal energy of a building is a stock and the energy gains or losses through its various components are flows. These gains or losses usually happen via the energy exchange between the building and the environment through the components. For instance, the solar radiation that shines into a building through its windows are inputs; the heat transfer through its walls may be inputs or outputs depending on the temperature difference between the inside and the outside.

Figure 3. The annual energy graph.
Figure1 illustrates how energy flows into and out of a building in the winter and summer, respectively. In order to maintain the temperature inside a building, the thermal energy it contains must remain constant—any shortage of thermal energy must be compensated and any excessive thermal energy must be removed. These are done through heating and air conditioning systems, which, together with ventilation systems, are commonly known as HVAC systems. Based on the stock-and-flow model, we can predict the energy cost of heating and air conditioning by summing up the energy flows in various processes of heat transfer, solar radiation, and energy generation over all the components of the building such as walls, windows, or roofs and over a certain period of time such as a day, a month, or a year.

Figure 2 shows the solar radiation heat map of a house and the distribution of the heat flux density over its building envelope. Figure 3 shows the results of the annual energy analysis for the house shown in Figure 2.

More information can be found in Chapter 3 of Energy3D's User Guide.

Energy2D video tutorials in English and Spanish

Many users asked if there is any good tutorial of Energy2D. I apologize for the lack of a User Manual and other tutorial materials (I am just too busy to set aside time for writing up some good documentations).


So Carmen Trudell, an architect who currently teaches at the School of Architecture of the University of Virginia, decided to make a video tutorial of Energy2D for her students. It turned out to be an excellent overview of what the software is capable of doing in terms of illustrating some basic concepts related to heat transfer in architectural engineering. She also kindly granted permission for us to publish her video on Energy2D's website so that other users can benefit from her work.

If you happen to come from the Spanish-speaking part of the world, there is also a Spanish video tutorial made by Gabriel Concha based on an earlier version of Energy2D.

Common architectural styles supported by Energy3D


Energy3D supports the design of some basic architectural styles commonly seen in New England, such as Colonial and Cape Cod. Its simple 3D user interface allows users to quickly sketch up a house with an aesthetically pleasing look -- with only mouse clicks and drags (and, of course, some patience). This makes it easy for middle and high school students to create meaningful, realistic designs and learn science and engineering from these authentic experiences -- who wants to keep doing those cardboard houses that look nothing like a real house for another 100 years?

The true enabler of science learning in Energy3D is its analytic capability that can tell students the energy consequences of their designs while they are working on them. Without this analytical capability, learning would have been cut short at architectural design (which undeniably is the fun part of Energy3D that entices students to explore many different design options that entertain the eyes). With the analytical capability, the relationship between form and function becomes a major driving force for student design. It is at this point that an Energy3D project becomes an engineering design project.

Architectural design, which focuses on designing the form, and engineering design, which focuses on designing the function, are equally important in both educational and professional practices. Students need to learn both. After all, the purpose of design is to meet various people's needs, including their aesthetic needs. This principle of coupling architectural design and engineering design is of generic importance as it can be extended to the broader case of integrating industrial design and engineering design. It is this coupling that marries art, science, and usability.

We are working on providing a list of common architectural styles that can be designed using Energy3D. These styles, four of them are shown in this article, show only the basic form of each style. Each should only take less than an hour to sketch up for beginners. If you want, you can derive more complex and detailed designs for each style.

Visualizing the "thermal breathing" of a house in 24-hour cycle with Energy3D

The behavior of a house losing or gaining thermal energy from the outside in a 24-hour cycle, when visualized using Energy3D's heat flux view, resembles breathing, especially in the transition between seasons in which the midday can be hot and the midnight can be cold. We call this phenomenon the "thermal breathing" of a house. This embedded YouTube video in this blog post illustrates this effect. For the house shown in the video, the date was set to be May 1st and the location is set to Santa Fe, New Mexico.


This video only shows the daily thermal breathing of a house. Considering the seasonal change of temperature, we may also definite a concept "annual thermal breathing," which describes this behavior on an annual basis.

This breathing metaphor may help students build a more vivid mental picture of the dynamic heat exchange between a house and the environment. Interestingly, it was only after I realized this thermal visualization feature in Energy3D that this metaphor came to my mind. This experience reflects the importance of doing in science and engineering: Ideas often do not emerge until we get something concrete done. This process of externalization of thinking is critically important to the eventual internalization of ideas or concepts.