Posts Tagged ‘Education research’

On the instructional sensitivity of computer-aided design logs

July 20th, 2014 by Charles Xie
Figure 1: Hypothetical student responses to an intervention.
In the fourth issue this year, the International Journal of Engineering Education published our 19-page-long paper on the instructional sensitivity of computer-aided design (CAD) logs. This study was based on our Energy3D software, which supports students to learn science and engineering concepts and skills through creating sustainable buildings using a variety of built-in design and analysis tools related to Earth science, heat transfer, and solar energy. This paper proposed an innovative approach of using response functions -- a concept borrowed from electrical engineering -- to measure instructional sensitivity from data logs (Figure 1).

Many researchers are interested in studying what students learn through complex engineering design projects. CAD logs provide fine-grained empirical data of student activities for assessing learning in engineering design projects. However, the instructional sensitivity of CAD logs, which describes how students respond to interventions with CAD actions, has never been examined, to the best of our knowledge.
Figure 2. An indicator of statistical reliability.

For the logs to be used as reliable data sources for assessments, they must be instructionally sensitive. Our paper reports the results of our systematic research on this important topic. To guide the research, we first propose a theoretical framework for computer-based assessments based on signal processing. This framework views assessments as detecting signals from the noisy background often present in large temporal learner datasets due to many uncontrollable factors and events in learning processes. To measure instructional sensitivity, we analyzed nearly 900 megabytes of process data logged by Energy3D as collections of time series. These time-varying data were gathered from 65 high school students who solved a solar urban design challenge using Energy3D in seven class periods, with an intervention occurred in the middle of their design projects.

Our analyses of these data show that the occurrence of the design actions unrelated to the intervention were not affected by it, whereas the occurrence of the design actions that the intervention targeted reveals a continuum of reactions ranging from no response to strong response (Figure 2). From the temporal patterns of these student responses, persistent effect and temporary effect (with different decay rates) were identified. Students’ electronic notes taken during the design processes were used to validate their learning trajectories. These results show that an intervention occurring outside a CAD tool can leave a detectable trace in the CAD logs, suggesting that the logs can be used to quantitatively determine how effective an intervention has been for each individual student during an engineering design project.

Iranian studies show the effectiveness of Molecular Workbench

May 7th, 2014 by Charles Xie
A Molecular Workbench virtual experiment used in the Iranian study.
In the May Issue of Journal of Educational and Social Research, published by MCSER (Mediterranean Center of Social and Educational Research) in Rome, researchers from Iran and Malaysia reported that "students who were taught using the Molecular Workbench software performed better in post-tests on five chemistry topics as compared with those who received conventional instruction." This study was conducted in Iranian secondary schools with 70 students. The researchers also reported that "students using the software also found this software useful in the learning of chemistry." Their paper, titled with "Molecular Workbench Software as Computer Assisted Instruction to Aid the Learning of Chemistry", is freely available in this open-access journal. The authors are Elaheh Khoshouie, Ahmad Fauzi Mohd Ayub, and Farhad Mesrinejad, from two universities in Iran and Malaysia, respectively.

This example, once again, demonstrates the power of visualization in science education. Regardless of the culture or religion children may have grown up with, scientific visualization transcends all the man-made barriers to convey science messages to the young minds. In the case of Molecular Workbench, the effect is even more profound because the heart of it has actually been written in the universal language of humanity -- mathematics.

Learning analytics is the "crystallography" for educational research

March 24th, 2014 by Charles Xie
To celebrate 100 years of dazzling history of crystallography, the year of 2014 has been declared by UNESCO as the International Year of Crystallography. To this date, 29 Nobel Prizes have been awarded to scientific achievements related to crystallography. On March 7th, the Science Magazine honored crystallographers with a special issue.

Why is crystallography such a big deal? Because it enables scientists to "see" atoms and molecules and discover the molecular structures of substances. One of the most famous examples is the discovery of the DNA helix by Rosalind Franklin in 1952, followed by Crick, Watson, and Wilkins' double helix model. Enough ink has been spilled on the importance of this discovery.

Science fundamentally relies on techniques such as crystallography for detecting and visualizing invisible things. Educational research needs this kind of techniques, too, to decode students' minds that are opaque to researchers. Up to this point, educational researchers depend on methods such as pre/post-tests, observations, and interviews. But these traditional methods are either insufficient or inefficient for measuring learning in complex processes such as scientific inquiry and engineering design. To achieve a level of truly "no child left behind," we will need to develop a research technique that can monitor every student for every minute in the classroom.

Such a technique has to be based on an integrated informatics system that can engage students with meaningful learning tasks, tease out what are in their minds, and capture every bit of information that may be indicative of learning. This involves development in all areas of learning sciences, including technology, curriculum, pedagogy, and assessment. Eventually, what we have is a comprehensive set of data through which we will sift to find patterns of learning or evaluate the effectiveness of an intervention.

The whole process is not unlike crystallography. At the end, it is the learning analytics that concludes the research. Today we are seeing a lot of learner data, but we probably have no idea what they actually mean. We can either say there is no significance in those data and shrug off, or we can try to figure out the right kind of data analytics to decipher them. Which attitude to choose probably depends on which universe we live in. But the history of crystallography can give us a clue. It was Max von Laue who created the first X-ray diffraction pattern in 1912. He couldn't interpret it, however. It wasn't until William Henry Bragg and William Lawrence Bragg's groundbreaking work later in the same year that scientists became able to infer molecular structures from those patterns. In educational research, the equivalent of this is the learning analytics -- a critical piece that will give data meaning.

For more information, read my new article "Visualizing Student Learning."

The first paper on learning analytics for assessing engineering design?

January 30th, 2014 by Charles Xie
Figure 1
The International Journal of Engineering Education published our paper ("A Time Series Analysis Method for Assessing Engineering Design Processes Using a CAD Tool") on learning analytics and educational data mining for assessing student performance in complex engineering design projects. I believe this is the first time learning analytics was applied to the study of engineering design -- an extremely complicated process that is very difficult to assess using traditional methodologies because of its open-ended and practical nature.

Figure 2
This paper proposes a novel computational approach based on time series analysis to assess engineering design processes using our Energy3D CAD tool. To collect research data without disrupting a design learning process, design actions and artifacts are continuously logged as time series by the CAD tool behind the scenes, while students are working on an engineering design project such as a solar urban design challenge. These "atomically" fine-grained data can be used to reconstruct, visualize, and analyze the entire design process of a student with extremely high resolution. Results of a pilot study in a high school engineering class suggest that these data can be used to measure the level of student engagement, reveal the gender differences in design behaviors, and distinguish the iterative (Figure 1) and non-iterative (Figure 2) cycles in a design process.

From the perspective of engineering education, this paper contributes to the emerging fields of educational data mining and learning analytics that aim to expand evidence approaches for learning in a digital world. We are working on a series of papers to advance this research direction and expect to help with the "landscaping" of  those fields.

Visual learning analytics based on graph theory: Part I

December 22nd, 2013 by Charles Xie
All educational research and assessment are based on inference from evidence. Evidence is constructed from learner data. The quality of this construction is, therefore, fundamentally important. Many educational measurements have relied on eliciting, analyzing, and interpreting students' constructed responses to assessment questions. New types of data may engender new opportunities for improving the validity and reliability of educational measurements. In this series of articles, I will show how graph theory can be applied to educational research.

The process of inquiry-based learning with an interactive computer model can be imagined as a trajectory of exploring in the problem space spanned by the user interface of the model. Students use various widgets to control different variables, observe the corresponding emergent behaviors, take some data, and then reason with the data to draw a conclusion. This sounds obvious. But exactly how do we capture, visualize, and analyze this process?

From the point of view of computational science, the learning space is enormous: If we have 10 controls in the user interface and each control has five inputs, there are potentially 100,000 different ways of interacting with the model. To be able to tackle a problem of this magnitude, we can use some mathematics. Graph theory is a trick that we are building into our process analytics. The publication of Leonhard Euler's Seven Bridges of Königsberg in 1736 is commonly considered as the birth of graph theory.

Figure 1: A learning graph made of two subgraphs representing two ideas.
In graph theory, a graph is a collection of vertices connected by edges: G = (V, E). When applied to learning, a vertex represents an indicator that may be related to certain competency of a student, which can be logged by software. An edge represents the transition from one indicator to another. We call a graph that represents a learning process as a learning graph.

A learning graph is always a digraph G = (V, A) -- namely, it always has directed edges or arrows -- because of the temporal nature of learning. Most likely, it is a multigraph that has multiple directed edges between one or more than one pair of vertices (it is sometimes called a multidigraph) because the student often needs multiple transitions between indicators to learn their connections. A learning graph often has loops, edges that connect back to the same vertex, because the student may perform multiple actions related to an indicator consecutively before making a transition. Figure 1 shows a learning graph that includes two sets of indicators, each for an idea.

Figure 2. The adjacency matrix of the graph in Figure 1.
The size of a learning graph is defined as the number of its arrows, denoted by |A(G)|. The size represents the number of actions the student takes during learning. The multiplicity of an arrow is the number of multiple arrows sharing the same vertices; the multiplicity of a graph, the maximum multiplicity of its arrows. The multiplicity represents the most frequent transition between two indicators in a learning process. The degree dG(v) of a vertex v in a graph G is the number of edges incident to v, with loops being counted twice. A vertex of degree 0 is an isolated vertex. A vertex of degree 1 is a leaf. The degree of a vertex represents the times the action related to the corresponding indicator is performed. The maximum degree Δ(G) of a graph G is the largest degree over all vertices; the minimum degree δ(G), the smallest.

The distance dG(u, v) between two vertices u and v in a graph G is the length of a shortest path between them. When u and v are identical, their distance is 0. When u and v are unreachable from each other, their distance is defined to be infinity ∞. The distance between two indicators may reveal how the related constructs are connected in the learning process.

Figure 3. A more crosscutting learning trajectory between two ideas.
Two vertices u and v are called adjacent if an edge exists between them, denoted by u ~ v. The square adjacency matrix is a means of representing which vertices of a graph are adjacent to which other vertices. Figure 2 is the adjacency matrix of the graph in Figure 1, the trace (the sum of all the diagonal elements in the matrix) of which represents the number of loops in the graph. Having known the adjacency matrix, we can apply the spectral graph theory to study the properties of a graph in relationship to the characteristic polynomial, eigenvalues, and eigenvectors of the matrix (because the adjacency matrix of a learning graph is a digraph, the eigenvalues are often complex numbers). For example, the eigenvalues of the adjacency matrix may be used to reduce the dimensionality of the dataset into clusters.

Figure 4. The adjacency matrix of the graph in Figure 3.
How might learning graphs be useful for analyzing student learning? Figure 3 gives an example that shows a different behavior of exploration between two ideas (such as heat and temperature or pressure and temperature). In this hypothetical case, the student has more transitions between two subgraphs that represent the two ideas and their indicator domains. This pattern can potentially result in better understanding of the connections between the ideas. The adjacency matrix shown in Figure 4 has different block structures than that shown in Figure 2: The blocks A-B and B-A are much sparser in Figure 2 than in Figure 4. The spectra of these two matrices may be quite different and could be used to characterize the knowledge integration process that fosters the linkage between the two ideas.

Go to Part II.

Computational process analytics: Compute-intensive educational research and assessment

October 5th, 2013 by Charles Xie
Trajectories of building movement (good)
Computational process analytics (CPA) differs from traditional research and assessment methods in that it is not only data-intensive, but also compute-intensive. A unique feature of CPA is that it automatically analyzes the performance of student artifacts (including all the intermediate products) using the same set of science-based computational engines that students used to solve problems. The computational engines encompass every single details in the artifacts and their complex interactions that are highly relevant to the nature of the problems students solved. They also recreate the scenarios and contexts of student learning (e.g., the calculated results in such a post-processing analysis are exactly the same as those presented as feedback to students while they were solving the problems). As such, the computational engines provide holistic, high-fidelity assessments of students' work that no human evaluator can ever beat -- while no one can track numerous variables students might have created in long and deep learning processes in a short evaluation time, a computer program can easily do the job. Utilizing disciplinarily intelligent computational engines to do performance assessment was a major breakthrough in CPA as this approach really has the potential to revolutionize computer-based assessment.

No building movement (bad)
To give an example, this weekend I am busy running all the analysis jobs on my computer to process 1 GB of data logged by our Energy3D CAD software. I am trying to reconstruct and visualize the learning and design trajectories of all the students, projected onto many
different axes and planes of the state space. To do that, an estimate of 30-40 hours of CPU time on my Lenovo X230 tablet, which is a pretty fast machine, is needed. Each step loads up a sequence of artifacts, runs a solar simulation for each artifact, and analyzes the results (since I have automated the entire process, this is actually not as bad as it sounds). Our assumption is that the time evolution of the performance of these artifacts would approximately reflect the time evolution of the performance of their designers. We should be able to tell how well a student was learning by examining if the performance of her artifacts shows a systematic trend of improvement, or is just random. This is way better than the performance assessment based on just looking at students' final products.

After all the intermediate performance data were retrieved through post-processing the artifacts, we can then analyze them using our Process Analyzer -- a visual mining tool being developed to show the analysis results in various visualizations (it is our hope that the Process Analyzer will eventually become a powerful assessment assistant to teachers as it would free teachers from having to deal with an enormous amount of raw data or complicated data mining algorithms). For example, the two images in this post show that one student went through a lot of optimization in her design and the other did not (there is no trajectory in the second image).

Measuring the effects of an intervention using computational process analytics

September 15th, 2013 by Charles Xie
"At its core, scientific inquiry is the same in all fields. Scientific research, whether in education, physics, anthropology, molecular biology, or economics, is a continual process of rigorous reasoning supported by a dynamic interplay among methods, theories, and findings. It builds understanding in the form of models or theories that can be tested."  —— Scientific Research in Education, National Research Council, 2002
Actions caused by the intervention
Computational process analytics (CPA) is a research method that we are developing in the spirit of the above quote from the National Research Council report. It is a whole class of data mining methods for quantitatively studying the learning dynamics in complex scientific inquiry or engineering design projects that are digitally implemented. CPA views performance assessment as detecting signals from the noisy background often present in large learner datasets due to many uncontrollable and unpredictable factors in classrooms. It borrows many computational techniques from engineering fields such as signal processing and pattern recognition. Some of these analytics can be considered as the computational counterparts of traditional assessment methods based on student articulation, classroom observation, or video analysis.

Actions unaffected by the intervention
Computational process analytics has wide applications in education assessments. High-quality assessments of deep learning hold a critical key to improving learning and teaching. Their strategic importance has been highlighted in President Obama’s remarks in March 2009: “I am calling on our nation’s Governors and state education chiefs to develop standards and assessments that don’t simply measure whether students can fill in a bubble on a test, but whether they possess 21st century skills like problem-solving and critical thinking, entrepreneurship, and creativity.” However, the kinds of assessments the President wished for often require careful human scoring that is far more expensive to administer than multiple-choice tests. Computer-based assessments, which rely on the learning software to automatically collect and sift learner data through unobtrusive logging, are viewed as a promising solution to assessing increasingly prevalent digital learning.

While there have been a lot of work on computer-based assessments for STEM education, one foundational question has rarely been explored: How sensitive can the logged learner data be to instructions?

Actions caused by the intervention.
According to the assessment guru Popham, there are two main categories of evidence for determining the instructional sensitivity of an assessment tool: judgmental evidence and empirical evidence. Computer logs provide empirical evidence based on user data recording—the logs themselves provide empirical data for assessment and their differentials before and after instructions provide empirical data for evaluating the instructional sensitivity. Like any other assessment tools, computer logs must be instructionally sensitive if they are to provide reliable data sources for gauging student learning under intervention. 


Actions unaffected by the intervention.
Earlier studies have used CAD logs to capture the designer’s operational knowledge and reasoning processes. Those studies were not designed to understand the learning dynamics occurring within a CAD system and, therefore, did not need to assess students’ acquisition and application of knowledge and skills through CAD activities. Different from them, we are studying the instructional sensitivity of CAD logs, which describes how students react to interventions with CAD actions. Although interventions can be either carried out by human (such as teacher instruction or group discussion) or generated by the computer (such as adaptive feedback or intelligent tutoring), we have focused on human interventions in this phase of our research. Studying the instructional sensitivity to human interventions will enlighten the development of effective computer-generated interventions for teaching engineering design in the future (which is another reason, besides cost effectiveness, why research on automatic assessment using learning software logs is so promising).

The study of instructional effects on design behavior and performance is particularly important, viewing from the perspective of teaching science through engineering design, a practice now mandated by the newly established Next Generation Science Standards of the United States. A problem commonly observed in K-12 engineering projects, however, is that students often reduce engineering design challenges to construction or craft activities that may not truly involve the application of science. This suggests that other driving forces acting
Distribution of intervention effect across 65 students.
on learners, such as hunches and desires for how the design artifacts should look, may overwhelm the effects of instructions on how to use science in design work. Hence, the research on the sensitivity of design behavior to science instruction requires careful analyses using innovative data analytics such as CPA to detect the changes, however slight they might be. The insights obtained from studying this instructional sensitivity may result in the actionable knowledge for developing effective instructions that can reproduce or amplify those changes.

Our preliminary CPA results have shown that CAD logs created using our Energy3D CAD tool are instructionally sensitive. The first four figures embedded in this post show two pairs of opposite cases with one type of action sensitive to an instruction that occurred outside the CAD tool and the other not. This is because the instruction was related to one type of action and had nothing to do with the other type. The last figure shows that the distribution of instructional sensitivity across 65 students. In this figure, the largest number means higher instructional sensitivity. A number close to one means that the instruction has no effect. From the graph, you can see that the three types of actions that are not related to the instruction fluctuate around one whereas the fourth type of action is strongly sensitive to the instruction.

These results demonstrate that software logs can not only record what students do with the software but also capture the effects of what happen outside the software.