Tag Archives: genetics

Designer dragons? Talking to students about the ethical implications of editing DNA

University of Michigan School for Environment and Sustainability, Flickr (CC-BY-2.0)

A breakthrough in medical research has allowed a team of scientists to edit the DNA of human embryos to repair a version of a gene that causes cardiomyopathy, a genetic disease resulting in heart failure. While some see this genome editing technology—known as CRISPR—as a remarkable tour de force, others find the practice extremely alarming.

Meanwhile, some middle school students are already practicing genetic engineering in the classroom with inexpensive kits. Geniventure, our dragon genetics game for middle and high school students, also allows students to manipulate genomes, but the DNA in Geniventure is virtual and the species is a mythical creature called a “drake,” the model species for dragons.

Working with drakes and dragons allows us to combine various real-world genes without having to be restricted to the genome of a specific species, a problem that scientists in many countries often run into. We’ve combined real genes from mice, fruit flies, lizards, and other model organisms into the genome of our fantastical creatures. Students thus experience many of the same real genes that scientists around the world are also studying. Importantly, using dragons also allows teachers to talk about ethical issues, including the implications associated with modifying DNA.

CRISPR incites fears of designer babiesthe idea that parents will someday want to choose particular traits for their unborn children. In Geniventure, students do “design” drakes in challenges that require them to change alleles to match a target. Teachers guiding students through these challenges have an opportunity to discuss the notion of modifying an organism’s genes for a particular purpose. They can pose questions to get students thinking about the ethical implications of gene editing: Are there circumstances where you wouldn’t want to edit a drake’s genes? What might happen if you changed the wrong gene and you couldn’t change it back? What effect would that have on the drake’s future offspring?

“Designing” drakes. Geniventure tasks students with manipulating drake genes by selecting alleles from pull-down menus in order to match a target drake.

It’s easier to discuss these issues when we are talking about drakes and dragons because humans aren’t anything like these fictitious creatures. But since the genes are modeled after real genes (e.g., the the albino gene is modeled after skin color in humans), we can translate conversations about dragons to similar debates by scientists and regulatory officials about human gene editing. In Geniventure, students change an albino drake’s genes from producing a broken enzyme so that it can create a functional protein and generate a drake with color distributed throughout its scales. Albinism is also an inherited genetic condition in humans, so there is a significant parallel that could bridge the conversation.

Scientists are using CRISPR to investigate the prevention of inherited diseases like Huntington’s disease, cystic fibrosis, and even some cancers, though there is opposition and concern over this technology. One major fear is the safety to a developing embryo. DNA that’s been modified in an embryo would be passed down for generations, which raises concerns that any mutations as a result of the gene editing could cause new diseases and become a permanent part of that family’s genetic blueprint. Geniventure enables students and teachers to start discussions about these important topics.

Virtual CRISPR-like techniques engage students in editing dragon DNA

The CRISPR gene editing technique is faster, cheaper, and more accurate than past methods of editing DNA. And it’s creating a huge buzz in the world of science and medical research. By precisely removing, adding, or altering part of the genome, CRISPR enables geneticists to target and edit genes that are associated with genetic diseases—without affecting other areas of the genome, a major drawback of previous approaches.

A recent story (CRISPR, 5 ways) includes a video, produced by Wired magazine, in which a biology professor at NYU explains CRISPR to a seven-year-old, a high school student, a college student, a graduate student, and an expert scientist in the field of genetics. The conversations range from genomes to the value of basic research.

In the final conversation with the expert scientist, the focus shifts to the level of DNA and genome engineering. Scientists who use CRISPR must understand the underlying mechanisms by which the genes affect particular genetic traits and disorders. They’re able to learn about the composition and functionality of genes from model species they study and apply what they’ve learned to another target species (e.g., the mouse is a model species for human genetic disease).

We’ve created an online learning environment that allows middle and high school students to do the same.

Geniventure, dragon genetics software

Geniventure, the next generation of our popular dragon genetics software Geniverse, places students in a virtual underground lab where they perform genetic experiments with drakes, the model organism for dragons. There is real biology behind the mythical drake and dragon genes and traits, which have been carefully compiled from the actual genes and associated traits of the anole lizard, mouse, fruit fly, zebrafish, and other model species used to study genetics. The genes that affect horns, wings, color, and other drake traits are genes that are involved in the development and functioning of similar traits in real organisms.

In our Geniventure game, students zoom into a drake’s genes, see the actual DNA code behind them, and manipulate the resulting proteins as the proteins do the work of producing traits. The first set of protein-based challenges using this new interface revolves around scale color (modeled after the same genes for human skin color) and allows students to edit the genes of an albino drake. After working with the proteins that produce melanin and discovering a broken enzyme that results in an albino drake, students enter the nucleus of the cell to change the drake’s genes (and DNA) from producing the broken enzyme so that it can create the functional protein, ultimately generating a drake with color distributed throughout its scales.

From albino to charcoal (right). In the protein-level challenges, students can view the starting state of their drake’s scale color (Albino), the current state (Lava), and the target state (Charcoal). The Start and Target views also display the distribution of color throughout the drake’s scale cells.

Proteins in action. In the Geniventure Zoom Room, students experiment with proteins and discover how they influence the color of the drake. Students are tasked with manipulating the proteins of an albino drake to restore color to its scales.

Inside the nucleus. In some challenges, students are unable to work with the proteins directly. Instead, they must enter the nucleus where they can alter the drake’s alleles to create the proteins needed to reach the target color.

Making this protein-based link from DNA to trait is critical for students’ ability to make sense of patterns between genes and traits— for example, dominant vs. recessive versions of genes— and to apply the same logic to other genetic phenomena. Through Geniventure, students are able to transfer their experience of editing genes and working with proteins in drakes to an understanding of how scientists are using CRISPR and other techniques.

Our goal is to help students better understand modern science, including biotechnology advances such as CRISPR, to make science engaging and relevant, so students can ultimately envision themselves as future scientists.

Why dragons?

Breeding virtual dragons is all in a day’s work in biology classrooms using Geniverse, our free, web-based genetics software. Although Geniverse is a game-like environment, it’s far more than child’s play. Indeed, students dive into genetics on a quest to heal a beloved dragon. Students use a model species (drakes) to explore the fundamental mechanisms of heredity and genetic diseases and get a taste of careers in genetics. (Drakes are essentially a smaller version of a dragon, and are a model species in much the same way as the mouse is a model species for human genetic disease.)

But why did we choose dragons and drakes? To start, they are just plain fun! And since they’re mythical, we can bring together into one animal any and all real-world genes we’d like to teach with—without having to be restricted to a specific species’ genome. So, while our dragons and drakes are fantastical, their genes are very much real, gathered from mice, fruit flies, lizards, and other organisms we study in laboratories all over the world. When students learn genetics with Geniverse, they’ll encounter the genes again, should they venture into a real genetics lab later in life.

Students begin their Geniverse adventure as a student in the Drake Breeder’s Guild, where they move through four levels of progressively more difficult genetics challenges and unlock new chapters of the narrative. Try Geniverse now and learn how fun (and educational) dragons can be!

Evo-Ed Integrative Cases will be enriched to address NGSS

A new collaborative research project at the Concord Consortium and Michigan State University will develop and research learning materials on the molecular and cellular basis for genetics and the process of evolution by natural selection. These two areas are both difficult to teach and learn, and although they have been historically taught separately, they are interlinked and span multiple levels of organization. The goal of Connected Biology: Three-dimensional learning from molecules to populations is to design, develop, and examine the learning outcomes of a new connected curriculum unit for biology that embodies the conceptual framework of the Next Generation Science Standards.

Peter White, science education researcher and entomologist at Michigan State University (MSU); Louise Mead, Education Director at the BEACON Center for the Study of Evolution in Action at MSU; and postdoctoral fellow Alexa Warwick at the BEACON Center visited the Concord Consortium recently to plan our joint work together. Frieda Reichsman and Paul Horwitz will serve as the Principal Investigator and Co-PI at the Concord Consortium.

The new units will leverage the contextually rich Evo-Ed Integrative Cases, which build directly on the interlinked nature of evolution and genetics and connect the science ideas with meaningful real-world examples. The Evo-Ed case studies track the evolution of traits from their origination in DNA mutation, to the production of different proteins, to the fixation of alternate macroscopic phenotypes in reproductively isolated populations. For example, the Evolution of Lactase Persistence case study examines the genetics, cell biology, anthropology, and biogeography of this system.

The human lactase gene (LCT) is a 55 kilo-base pair segment of the second chromosome.

The curriculum will integrate the three dimensions of science—the core ideas of biology, the science and engineering practices, and the crosscutting concepts—to support all students in building toward deep understandings of biological phenomena. The project will be guided by two main research questions:

  1. How does learning progress when students experience a set of coherent biology learning materials that employ the principles of three-dimensional learning?
  2. How do students’ abilities to transfer understanding about the relationships between molecules, cells, organisms, and evolution change over time and from one biological phenomenon to another?

Note: If you’ve used the Evo-Ed cases in your classroom, we’d love to get your feedback! Please respond to this short survey to be entered into a drawing to receive a $50 Amazon gift card.

5 Reasons to Vote in STEM For All Video Showcase

We’re thrilled to present five videos in the National Science Foundation STEM for All Video Showcase from May 17 to 23! We invite you to view the videos and join the conversation about the latest research in STEM and computer science teaching and learning. Please vote for our videos through Facebook, Twitter, or email!

CODAPCODAP

Data are everywhere, except in the classroom! Learn how our Common Online Data Analysis Platform (CODAP) is bringing more rich experiences with data to more teachers and students.

Watch Now

Teaching TeamworkTeaching Teamwork

Collaboration is highly valued in the 21st century workplace. Our Teaching Teamwork project is measuring how effectively electronics students work in teams.

Watch Now

GeniverseGeniConnect & GeniGUIDE

Geniverse engages students in exploring heredity and genetics by breeding virtual dragons. GeniConnect connects afterschool students with biotech scientists to play Geniverse together. In GeniGUIDE, we’re adding an intelligent tutoring system to Geniverse, supporting students and relaying information to the most intelligent tutor in the room – the teacher.

Watch Now

Teaching Environmental Sustainability with Model My WatershedTeaching Environmental Sustainability
with Model My Watershed

Teaching Environmental Sustainability with Model My Watershed is developing place-based, problem-based, hands-on set tools aligned to NGSS to promote geospatial literacy and systems thinking for middle and high school students.

Watch Now

GRASPGRASP

GRASP (Gesture Augmented Simulations for Supporting Explanations) is investigating how middle school students use body movement to build deeper reasoning about critical science concepts.

Watch Now

Digital gaming will connect afterschool students with biotech mentors

Our nation’s future competitiveness and our citizens’ overall STEM literacy rely on our efforts to forge connections between the future workforce and the world of emerging STEM careers. Biotechnology, and genetics in particular, are rapidly advancing areas that will offer new jobs across the spectrum from technicians to scientists. A new $1.2 million National Science Foundation-funded project at the Concord Consortium will use Geniverse, an immersive digital game where students put genetics knowledge into action as they breed dragons, to help connect underserved students with local biotechnology professionals to strengthen student awareness of STEM careers.

East End House Students

Students from East End House enjoy collaborating on computer-based science activities.

Geniverse is our free, web-based software designed for high school biology that engages students in exploring heredity and genetics by breeding and studying virtual dragons. This game-like software allows students to undertake genetics experimentation with results that closely mimic real-world genetics. The new GeniConnect project will extend the gaming aspects of Geniverse and revise the content to more fully target middle school biology, introducing Geniverse to the afterschool environment.

The three-year GeniConnect project will develop and research a coherent series of student experiences in biotechnology and genetics involving game-based learning, industry mentoring, and hands-on laboratory work. Industry professionals from Biogen, Monsanto, and other firms will mentor afterschool students at East End House, a community center in East Cambridge, Massachusetts.

With researchers from Purdue University, we’ll explore how an immersive game and a connection to a real scientist can increase STEM knowledge, motivation, and career awareness of underserved youth. We will also develop and research a scalable model for STEM industry/afterschool partnerships, and produce a STEM Partnership Toolkit for the development of robust, educationally sound partnerships among industry professionals and afterschool programs. The Toolkit will be distributed to approximately 500 community-based organizations and afterschool programs nationally that are member organizations of the Alliance for Strong Families and Communities.

Geniverse Narrative

Beautiful graphics designed by FableVision Studios engage students in a compelling narrative. Students follow the arduous journey of their heroic character and suffering dragon to the Drake Breeder’s Guild.

Geniverse Lab

Students are welcomed into the Drake Breeder’s Guild where they will learn the tricks of the genetic trade. (Drakes are a model species that can help solve genetic mysteries in dragons, in much the same way as the mouse is a model species for human genetic disease.) Students are engaging in an authentic, experiment-driven approach to biology—in a fantastical world.

The National Science Foundation funds grant to pair intelligent tutoring system and Geniverse

Games, modeling, and simulation technologies hold great potential for helping students learn science concepts and engage with the practices of science, and these environments often capture meaningful data about student interactions. At the same time, intelligent tutoring systems (ITS) have undergone important advancements in providing support for individual student learning. Their complex statistical user models can identify student difficulties effectively and apply real-time probabilistic approaches to select options for assistance.

The Concord Consortium is proud to announce a four-year $1.5 million grant from the National Science Foundation that will pair Geniverse with robust intelligent tutoring systems to provide real-time classroom support. The new GeniGUIDE—Guiding Understanding via Information from Digital Environments—project will combine a deeply digital environment with an ITS core.

Geniverse is our free, web-based software for high school biology that engages students in exploring heredity and genetics by breeding and studying virtual dragons. Interactive models, powered by real genes, enable students to do simulated experiments that generate realistic and meaningful genetic data, all within an engaging, game-like context.

Geniverse Breeding

Students are introduced to drake traits and inheritance patterns, do experiments, look at data, draw tentative conclusions, and then test these conclusions with more experimentation. (Drakes are a model species that can help solve genetic mysteries in dragons, in much the same way as the mouse is a model species for human genetic disease.)

The GeniGUIDE project will improve student learning of genetics content by using student data from Geniverse. The software will continually monitor individual student actions, taking advantage of ITS capabilities to sense and guide students automatically through problems that have common, easily rectified issues. At the classroom level, it will make use of this same capability to help learners by connecting them to each other. When it identifies a student in need of assistance that transcends basic feedback, the system will connect the student with other peers in the classroom who have recently completed similar challenges, thus cultivating a supportive environment.

At the highest level, the software will leverage the rich data being collected about student actions and the system’s evolving models of student learning to form a valuable real-time resource for teachers. GeniGUIDE will identify students most in need of help at any given time and provide alerts to the teacher. The alerts will include contextual guidance about students’ past difficulties and most recent attempts as well as suggestions for pedagogical strategies most likely to aid individual students as they move forward.

The Concord Consortium and North Carolina State University will research this layered learner guidance system that aids students and informs interactions between student peers and between students and teachers. The project’s theoretical and practical advances promise to offer a deeper understanding of how diagnostic formative data can be used in technology-rich K-12 classrooms. As adaptive student learning environments find broad application in education, GeniGUIDE technologies will serve as an important foundation for the next generation of teacher support systems.

Classrooms on fire…with dragon genetics!

No smoke and mirrors here: dragons are getting kids all fired up about genetics. Geniverse software engages students with compelling reasons to solve genetics problems. As they rise through the ranks of the Drake Breeders Guild, students win stars and quills for efficient experimentation and for using their own experimental results as evidence for their scientific claims. Watch how students are learning genetics while having fun—using Geniverse! Want to get your students fired up about genetics, too? Sign up to use Geniverse in your classroom next year.