Tag Archives: Geniventure

3 Reasons to Vote in STEM For All Video Showcase

We’re thrilled to present three videos in the National Science Foundation STEM for All Video Showcase from May 14 to 21! We invite you to view the videos and join the conversation about research projects that are transforming the STEM educational landscape. Please vote for our videos through Facebook, Twitter, or email!



Geniventure is a free online game with an Intelligent Tutoring System that engages students from middle school through higher education in genetics and heredity by saving virtual dragons from extinction. Through scaffolded virtual investigations, students explore the physical traits that result from allele combinations, then zoom into cells and manipulate the proteins that ultimately give rise to those traits.

Watch & Vote


Integrating Computational Thinking and Experimental Science

InSPECT supports the integration of computational thinking (CT) in experimental science with a novel technology-enhanced curriculum, and examines how students engage in CT using these tools for inquiry. InSPECT is designing a series of open-ended high school biology experiments using inexpensive DIY lab instruments developed in partnership with Manylabs, including Dataflow—a digital tool for experimental control and data acquisition using Internet-of-Things sensors.

Watch & Vote

Teaching Environmental Sustainability with Model My Watershed

With our collaborators at  and Stroud Water Research Center, we’re developing interdisciplinary, place-based, problem-based, hands-on resources and models aligned to NGSS to promote watershed stewardship, geospatial literacy, and systems thinking. We’re introducing middle and high school students to environmental and geospatial science that engenders critical incidents and encourage students to pursue environmental and geoscience careers.

Watch & Vote

Dashboard helps teachers understand student progress and performance in genetics game

Our dragon genetics games have engaged thousands of students for many years. In that time, teachers have asked for an easy way to track their students’ progress and performance. Until now, teacher reports have been difficult to pull out of our system and impossible to parse in real time. The GeniGUIDE project, in partnership with North Carolina State University, is developing a teacher dashboard to accompany our new Geniventure software. We are currently piloting the beta version of this dashboard in multiple classrooms in Maine, North Carolina, New Jersey, and Massachusetts.

“A dashboard is a visual display of the most important information needed to achieve one or more objectives that has been consolidated on a single computer screen so it can be monitored at a glance.” – Stephen Few

Our dashboard displays information processed by an Intelligent Tutoring System (ITS) integrated into Geniventure. As students complete challenges in the game, they are rewarded with different color crystals for their accomplishments (Figure 1). Students who complete a challenge efficiently and without mistakes receive a blue-green crystal. Those who make a small number of missteps receive a yellow crystal while those with more mistakes receive a red. A black “try again” crystal is given to a student with too many mistakes to move on. As students level up through the missions, the ITS builds a model of conceptual understanding of specific learning goals. As student performance on these concepts improves over time, evidence that they have a solid understanding grows stronger.

Figure 1. Student view within Geniventure of the colored crystals (bottom of screen).

Our preliminary teacher dashboard design (Figure 2) was guided by three factors. First, we looked back at our many years of classroom observations of teachers who implemented our suite of dragon genetics games—from our most recent Geniverse to GeniGames and BioLogica—and asked: What information could have helped teachers better facilitate student use of the game? Second, we examined recent dashboard designs implemented in prior Concord Consortium projects to help us distinguish between in-class and after-class use. Finally, we looked at other teacher dashboards that are currently available on the market.

Figure 2. Beta version of Geniventure teacher dashboard.

During the pilot testing, we’re closely observing how teachers use the primary view of the dashboard, which provides information on both student progress and performance during class time. We hope to answer the following questions:

  • Can the teacher adequately track student progress through the game?
  • When do teachers intervene and when do they allow students to struggle? (Do teachers first help those students with black or red crystals?)
  • Do teachers look at how many attempts a student made at a challenge?
  • If teachers notice that particular students are ahead of the class, what actions do they take?

The dashboard also displays a graphical representation of student understanding of genetics concepts highlighted in the game. Some concepts are directly related to specific student actions (e.g., two recessive alleles are required to produce a recessive trait) while others are calculated based on performance across certain challenge types (e.g., genotype to phenotype mapping). The teacher can delve deeper into these secondary reports to view not only individual student data (Figure 3), but also aggregated class data (Figure 4). Through classroom observations and interviews with teachers, we hope to determine:

  • Do teachers have the time and bandwidth to make sense of the concept understanding graphs during class?
  • To what extent do the concept graphs help teachers understand where individual students, or the entire class, are having trouble?
  • What action, if any, do teachers take based on the concept graphs?

Figure 3. Display of individual student’s conceptual understanding.

Figure 4. Representation of class average conceptual understanding.

As our ITS becomes more sophisticated, we plan to widen the concepts we track and make better use of student data to inform teachers.

How do you make use of dashboards? Let us know what features you’d like to see as we improve our ITS-enhanced dashboard.

Designer dragons? Talking to students about the ethical implications of editing DNA

University of Michigan School for Environment and Sustainability, Flickr (CC-BY-2.0)

A breakthrough in medical research has allowed a team of scientists to edit the DNA of human embryos to repair a version of a gene that causes cardiomyopathy, a genetic disease resulting in heart failure. While some see this genome editing technology—known as CRISPR—as a remarkable tour de force, others find the practice extremely alarming.

Meanwhile, some middle school students are already practicing genetic engineering in the classroom with inexpensive kits. Geniventure, our dragon genetics game for middle and high school students, also allows students to manipulate genomes, but the DNA in Geniventure is virtual and the species is a mythical creature called a “drake,” the model species for dragons.

Working with drakes and dragons allows us to combine various real-world genes without having to be restricted to the genome of a specific species, a problem that scientists in many countries often run into. We’ve combined real genes from mice, fruit flies, lizards, and other model organisms into the genome of our fantastical creatures. Students thus experience many of the same real genes that scientists around the world are also studying. Importantly, using dragons also allows teachers to talk about ethical issues, including the implications associated with modifying DNA.

CRISPR incites fears of designer babiesthe idea that parents will someday want to choose particular traits for their unborn children. In Geniventure, students do “design” drakes in challenges that require them to change alleles to match a target. Teachers guiding students through these challenges have an opportunity to discuss the notion of modifying an organism’s genes for a particular purpose. They can pose questions to get students thinking about the ethical implications of gene editing: Are there circumstances where you wouldn’t want to edit a drake’s genes? What might happen if you changed the wrong gene and you couldn’t change it back? What effect would that have on the drake’s future offspring?

“Designing” drakes. Geniventure tasks students with manipulating drake genes by selecting alleles from pull-down menus in order to match a target drake.

It’s easier to discuss these issues when we are talking about drakes and dragons because humans aren’t anything like these fictitious creatures. But since the genes are modeled after real genes (e.g., the the albino gene is modeled after skin color in humans), we can translate conversations about dragons to similar debates by scientists and regulatory officials about human gene editing. In Geniventure, students change an albino drake’s genes from producing a broken enzyme so that it can create a functional protein and generate a drake with color distributed throughout its scales. Albinism is also an inherited genetic condition in humans, so there is a significant parallel that could bridge the conversation.

Scientists are using CRISPR to investigate the prevention of inherited diseases like Huntington’s disease, cystic fibrosis, and even some cancers, though there is opposition and concern over this technology. One major fear is the safety to a developing embryo. DNA that’s been modified in an embryo would be passed down for generations, which raises concerns that any mutations as a result of the gene editing could cause new diseases and become a permanent part of that family’s genetic blueprint. Geniventure enables students and teachers to start discussions about these important topics.

Virtual CRISPR-like techniques engage students in editing dragon DNA

The CRISPR gene editing technique is faster, cheaper, and more accurate than past methods of editing DNA. And it’s creating a huge buzz in the world of science and medical research. By precisely removing, adding, or altering part of the genome, CRISPR enables geneticists to target and edit genes that are associated with genetic diseases—without affecting other areas of the genome, a major drawback of previous approaches.

A recent story (CRISPR, 5 ways) includes a video, produced by Wired magazine, in which a biology professor at NYU explains CRISPR to a seven-year-old, a high school student, a college student, a graduate student, and an expert scientist in the field of genetics. The conversations range from genomes to the value of basic research.

In the final conversation with the expert scientist, the focus shifts to the level of DNA and genome engineering. Scientists who use CRISPR must understand the underlying mechanisms by which the genes affect particular genetic traits and disorders. They’re able to learn about the composition and functionality of genes from model species they study and apply what they’ve learned to another target species (e.g., the mouse is a model species for human genetic disease).

We’ve created an online learning environment that allows middle and high school students to do the same.

Geniventure, dragon genetics software

Geniventure, the next generation of our popular dragon genetics software Geniverse, places students in a virtual underground lab where they perform genetic experiments with drakes, the model organism for dragons. There is real biology behind the mythical drake and dragon genes and traits, which have been carefully compiled from the actual genes and associated traits of the anole lizard, mouse, fruit fly, zebrafish, and other model species used to study genetics. The genes that affect horns, wings, color, and other drake traits are genes that are involved in the development and functioning of similar traits in real organisms.

In our Geniventure game, students zoom into a drake’s genes, see the actual DNA code behind them, and manipulate the resulting proteins as the proteins do the work of producing traits. The first set of protein-based challenges using this new interface revolves around scale color (modeled after the same genes for human skin color) and allows students to edit the genes of an albino drake. After working with the proteins that produce melanin and discovering a broken enzyme that results in an albino drake, students enter the nucleus of the cell to change the drake’s genes (and DNA) from producing the broken enzyme so that it can create the functional protein, ultimately generating a drake with color distributed throughout its scales.

From albino to charcoal (right). In the protein-level challenges, students can view the starting state of their drake’s scale color (Albino), the current state (Lava), and the target state (Charcoal). The Start and Target views also display the distribution of color throughout the drake’s scale cells.

Proteins in action. In the Geniventure Zoom Room, students experiment with proteins and discover how they influence the color of the drake. Students are tasked with manipulating the proteins of an albino drake to restore color to its scales.

Inside the nucleus. In some challenges, students are unable to work with the proteins directly. Instead, they must enter the nucleus where they can alter the drake’s alleles to create the proteins needed to reach the target color.

Making this protein-based link from DNA to trait is critical for students’ ability to make sense of patterns between genes and traits— for example, dominant vs. recessive versions of genes— and to apply the same logic to other genetic phenomena. Through Geniventure, students are able to transfer their experience of editing genes and working with proteins in drakes to an understanding of how scientists are using CRISPR and other techniques.

Our goal is to help students better understand modern science, including biotechnology advances such as CRISPR, to make science engaging and relevant, so students can ultimately envision themselves as future scientists.