Tag Archives: light absorption

Using Energy2D to simulate Trombe walls


A Trombe wall is a sun-facing wall separated from the outdoors by glass and an air space. It consists a solar absorber (such as a dark surface) and two vents for air in the house to circulate through the space and carry the solar heat to warm the house up. In a way, a Trombe wall is like a machine that uses air as a convey belt of thermal energy harvested from the sun. Trombe walls are very simple and easy to make and are sometimes used in passive solar green buildings.


Hiding sophisticated power of computational fluid dynamics behind a simple graphical user interface, our Energy2D software can easily simulate how a Trombe wall works. The two images in this blog post show screenshots of a Trombe wall simulation and its closeup version. You can play the simulation on this page and download the models there. If you open the models using Energy2D, you should be able to see how easy it is to tweak the models and create realistic heat flow simulations.

Solar chimneys operate based on similar principles. Energy2D should be able to simulate solar chimneys as well. Perhaps this would be a good challenge to you. (I will post a solar chimney simulation later if I figure out how to do it.)

Which colors absorb more light energy?

Figure 1. A page with some color
strips under a table lamp. Click the
image to enlarge it to see the details.
We all know black objects absorb more light energy than white ones. What about red, green, blue, and any other colors? With an infrared (IR) camera, this is very easy to figure out.

Print some strips in any color you want on a page, as shown in Figure 1. Put the page under a table lamp and let the light shine on it for 10 seconds. Then aim an IR camera at the paper. Figure 2 shows the results.

Figure 2. An IR image showing the
amount of light energy absorbed by
the color strips.
Obviously the black strip absorbed the most. But the red, blue, and green ones did not absorb much. Interestingly, the dark gray and purple ones absorbed absorbed more than I would imagine.

I have to admit that I didn't know how other colors absorb light energy before doing this experiment. With an IR camera, you can easily check it out just on your own like what I did--for any color and any comparison.

If you have heard that Steve Chu, our Energy Secretary, has been serious about painting our roofs with light colors and Mayor Michael Bloomberg has agreed to answer the call in New York City, you may find this little experiment worth your while--you may pick a color that does not absorb a lot of energy yet it will be more colorful than white.