Category Archives: Main Blog

Global Researchers and Developers Connect at 2017 Data Science Education Technology Conference

Over 100 thought leaders from organizations around the U.S. and four continents gathered from February 15 to 17 to generate important innovations needed in technology and teaching and learning at the Concord Consortium’s first Data Science Education Technology conference. Senior researchers, educators, and scientists from as far as Nigeria and New Zealand convened at the David Brower Center in Berkeley, California, to share a comprehensive overview of this rapidly growing area of data science education.

“This is a thrilling milestone,” notes Chad Dorsey, president and CEO of the Concord Consortium. “Never before have experts across mathematics, science, and technology come together to focus their thinking on the emerging field of data science education.”  

Dan Damelin, William Finzer, and Natalya St. Clair of the Concord Consortium.

Some of the 100 DSET Conference attendees.

Over the next few decades, data science education is expected to undergo a profound change. According to opening panelist Deb Nolan, UC Berkeley is offering an Intro to Data Science Class with enrollment of over 700 students in it, and there is currently a campus-wide initiative to plan for a data science major. In addition, the National Science Foundation has included Harnessing Data for 21st Century Science and Engineering as a priority in a “10 Big Ideas for Future Investments” report.

To reflect the dual-sided nature of this new territory in education, the conference topics comprised two strands. The Teaching and Learning strand, designed for those considering data science-related curriculum development, brought together researchers and educators, and generated a wealth of new understandings and patterns for educational research—educators in particular left with fresh ideas on how to apply cutting-edge curriculum practices in their classroom. Researchers left with important ideas about how to define success for educational results in this fast-growing and essential research field.

“Data science is evolving. And data science education is a science on its own, which can reach out to all branches of science and similar social sciences. Already I see people here who are trying to brainstorm ways we can move ahead on data science and how we can move forward to educate people on data science,” says Kenechukwu Okeke of Nnamdi Azikiwe University, Nigeria.

In the Technology strand, participants worked with data analysis platforms such as Tuva, Desmos, and CODAP (the Common Online Data Analysis Platform). Participants with software experience created their own CODAP plug-ins and also built skills to make their work more efficient. In the closing session, DSET participants watched as Ph.D. student Takahiko Tsuchiya (Georgia Institute of Technology) made data in CODAP audible as sound using a sonification plug-in he had programmed during the conference.

Register now for CADRE Webinar on DSET conference highlights

Join William Finzer, Daniel Damelin, and Natalya St. Clair of the Concord Consortium in a CADRE webinar Friday, March 3, from 1-2 pm EST for highlights from the DSET conference. Register now!

Join us at future DSET Meetups

We’ll continue to gather thought leaders in data science education technology through informal meetups in Austin, San Antonio, Los Angeles, Portland, Baltimore, and New Zealand. Going to SXSW Edu, NCTM, or NSTA? Contact us for more information about upcoming meetups. We look forward to seeing you!

 

Designing building-integrated photovoltaics with Energy3D

Fig. 1: An example of solar facade.
Building-integrated photovoltaics (BIPV) represents an innovative way to think and design buildings as both human dwellings and power plants. In BIPV, solar panels or photovoltaic thin films are used to replace conventional constructional materials in parts of the building envelope such as roofs, walls, and even windows. Designing new buildings nowadays increasingly includes BIPV elements to offset operational costs. Existing buildings can also be retrofitted with BIPV (e.g., replacing glass curtain walls with solar panels). BIPV is expected to grow more important in architectural design and building engineering.

Fig. 2: An example of solar curtain walls
We are developing modeling capabilities in Energy3D to support the design, simulation, and analysis of BIPV. Figures 1 and 2 in this article show a few cases that demonstrate these capabilities in their primitive forms. Considering BIPV is relatively new and a lot of research is still under way to develop and test new ideas and technologies, we expect the development of these capabilities in Energy3D will be a long-term effort that will be integrated with latest research and development in the industry.
Fig.3: Power balancing throughout the day.

As the first step towards that long-term vision, the current version of Energy3D has already allowed you to add solar panel racks to any planar surface, being it horizontal, vertical, or slanted. Running a simulation for any day, you will be able to predict the daily output of all the solar panels. You can also compare the outputs of selected arrays. For example, if you want to track down on which side solar panels produce the most at a given time during the day, you can compare them in a graph. Figure 3 shows a comparison of the solar arrays in the model shown in Figure 1. As you can see, the east-facing array produces peak energy in the morning whereas the west-facing array produces peak energy in the afternoon. In this case, the BIPV solution ensures that the photovoltaic system generates some electricity at different times of the day.

Video tutorial: Solarize an imported building in Energy3D

We are pleased to announce that the solar panel and analysis tools in Energy3D (version 6.5.6 or higher) are now fully applicable to arbitrary imported structures. We hope that the new capabilities can help engineers who design rooftop solar systems and building solar facades to get their jobs done more efficiently and students who are interested in engineering to learn the theory and practice in an inquiry-based fashion. The six-minute video in this article demonstrates how easy it is to perform solar panel design and analysis in Energy3D. (Note: Unfortunately, the annotations in the video do not show if you are watching this on a smartphone.)



One of the handiest features is the automatic, real-time detection of the angle of the surface under a solar panel while the user is moving it. This feature basically allows the user to drag and drop a solar panel or a solar panel rack anywhere (on top of roofs, walls, or other surfaces) without having to set its tilt angle manually.

Solar heat map of a house with solar panels
Copy and paste a house with solar panels
Solar panels are "first-class citizens" in Energy3D as they are readily recognized by the built-in simulation engines. Energy3D provides a comprehensive list of properties that you can choose for each solar panel or solar panel array. For example, even the temperature coefficient of Pmax, a parameter that specifies the change of solar cell efficiency with regard to ambient temperature change, is supported. The software also has a variety of analytic tools for predicting the hourly, daily, and annual outputs of each solar panel and their sums. Interactive graphs are available to intuitively show the trends and allow the user to compare the outputs of different solar panels, of different arrays, on different days, or with different environmental settings (e.g., with or without a tree nearby).

These "native" solar panels are now completely blended into the "alien" meshes of structures imported into Energy3D from other CAD software or Google Earth. For example, once you drop a solar panel on a surface of the structure, it will stick to it. In other words, if you move or rotate the structure, the solar panel will go with it as if it were part of the original design. When you copy and paste the entire building, the solar panels will be copied and pasted as well (by the way, it takes only four clicks to copy and paste a building in Energy3D through the pop-up menu: one click to pick which one to act upon, one click to select the "Copy" action, one click to pick where to paste, and one last click to select the "Paste" action). That is to say, the native and alien meshes are completely meshed.

Data Science Education Technology Conference ready to welcome 100 thought leaders

We are proud to announce the Data Science Education Technology (DSET) Conference to be held February 15-17, 2017, at the David Brower Center in Berkeley, CA. Over 100 thought leaders from a range of organizations, including UC Berkeley, TERC, EDC, Desmos, SRI, Exploratorium, New York Hall of Science, Harvard’s Institute for Applied Computational Science, Lawrence Hall of Science, and Tuva will be in attendance at this groundbreaking event in the emerging field of data science education.

Conference attendees come from 15 states and 6 countries around the world. Map created with CODAP. View the data table and more information about attendees in this CODAP document.

“Data and analytics hold promise for revolutionizing all aspects of learning,” Chad Dorsey, president and CEO of the Concord Consortium, explains. “As we enter a world where practically every decision and moment of the day will connect to data in some way, preparing learners to explore, understand, and communicate with data must become a key national priority.”

The DSET conference addresses these new opportunities by focusing on two strands. The Teaching and Learning strand is designed for those thinking about curriculum development. This strand addresses the pedagogical challenges and opportunities associated with making use of data technologies in educational settings. Sessions will include data-driven learning experiences and discussion of lessons learned by curriculum designers. “It’s an exciting time to design activities to help students be ready for data science in the future,” notes Tim Erickson of Epistemological Engineering.

The Technology strand is designed especially for those with programming experience and focuses on software development. Attendees will build relevant, timely skills and learn to create a web app and increase efficiency. William Finzer, developer of the Common Online Data Analysis Platform (CODAP) at the Concord Consortium, will lead a session on data technology integration with online curricula and moderate a discussion on leveraging open-source software to enhance learners’ experience working with data.

You’re invited to attend the conference as a virtual participant. Registration is free! Join the virtual conference!

Register for the Virtual Conference

Where else can I connect with #dsetonline?

Virtual attendees are encouraged to join the conference backchannel social media conversation that will run concurrently with the face-to-face conference.

Evo-Ed Integrative Cases will be enriched to address NGSS

A new collaborative research project at the Concord Consortium and Michigan State University will develop and research learning materials on the molecular and cellular basis for genetics and the process of evolution by natural selection. These two areas are both difficult to teach and learn, and although they have been historically taught separately, they are interlinked and span multiple levels of organization. The goal of Connected Biology: Three-dimensional learning from molecules to populations is to design, develop, and examine the learning outcomes of a new connected curriculum unit for biology that embodies the conceptual framework of the Next Generation Science Standards.

Peter White, science education researcher and entomologist at Michigan State University (MSU); Louise Mead, Education Director at the BEACON Center for the Study of Evolution in Action at MSU; and postdoctoral fellow Alexa Warwick at the BEACON Center visited the Concord Consortium recently to plan our joint work together. Frieda Reichsman and Paul Horwitz will serve as the Principal Investigator and Co-PI at the Concord Consortium.

The new units will leverage the contextually rich Evo-Ed Integrative Cases, which build directly on the interlinked nature of evolution and genetics and connect the science ideas with meaningful real-world examples. The Evo-Ed case studies track the evolution of traits from their origination in DNA mutation, to the production of different proteins, to the fixation of alternate macroscopic phenotypes in reproductively isolated populations. For example, the Evolution of Lactase Persistence case study examines the genetics, cell biology, anthropology, and biogeography of this system.

The human lactase gene (LCT) is a 55 kilo-base pair segment of the second chromosome.

The curriculum will integrate the three dimensions of science—the core ideas of biology, the science and engineering practices, and the crosscutting concepts—to support all students in building toward deep understandings of biological phenomena. The project will be guided by two main research questions:

  1. How does learning progress when students experience a set of coherent biology learning materials that employ the principles of three-dimensional learning?
  2. How do students’ abilities to transfer understanding about the relationships between molecules, cells, organisms, and evolution change over time and from one biological phenomenon to another?

Note: If you’ve used the Evo-Ed cases in your classroom, we’d love to get your feedback! Please respond to this short survey to be entered into a drawing to receive a $50 Amazon gift card.

Teaching about water quality and the importance of fresh water

A new resolution may overturn the Interior Department’s “Stream Protection Rule,” which required coal mining companies to monitor and test the quality of local streams and rivers before, during, or after mining operations. There is no better time than the present to learn about the importance of water issues in our communities and environment. Three Concord Consortium projects focus on teaching middle and high school students about their local watersheds, careers in environmental conservation, and freshwater availability, and all of them offer free, high-quality resources ideal for classrooms or informal education settings.

The Teaching Environmental Sustainability: Model My Watershed project, a collaborative research project at the Concord Consortium, Millersville University, and the Stroud Water Research Center, has developed curricula for environmental/geoscience disciplines for high school classrooms, using the Model My Watershed (MMW) web-based application. The curricula also integrate low-cost environmental sensors, allowing students to collect and upload their own data and compare them to data visualized on the new MMW.

In Supporting Collaborative Inquiry, Engineering, and Career Exploration with Water (Water SCIENCE), middle school students from southern Arizona, central valley California, southeastern Pennsylvania, and eastern Massachusetts complete hands-on science and engineering activities, receive guidance and instruction from undergraduate and graduate student mentors, interact online with STEM professionals, and learn about careers in environmental conservation and engineering while investigating their community’s local water resources.

Melinda Daniels, Associate Research Scientist at the Stroud Water Research Center, describes her work. Watch additional videos about water scientists and environmental conservationists »

And in our High-Adventure Science project, we’ve developed a unit entitled “Will there be enough fresh water?” Students explore the distribution and uses of fresh water on Earth. They run experiments with computational models to explore the flow of groundwater, investigate the relationship of groundwater levels to rainfall and human impact, and hear from a hydrologist working on the same question. Students think about how to assess the sustainability of water usage locally and globally while considering their own water usage. Use these great resources today to help students understand critical water issues!

Aquifers

Students use computational models to explore water extraction from aquifers in urban and rural areas.

Importing and analyzing models created by other CAD software in Energy3D: Part 2


Fig.1: The Gherkin (London, UK)
In Part I, I showed that Energy3D can import COLLADA models and perform some analyses. This part shows that Energy3D (Version 6.3.5 or higher) can conduct full-scale solar radiation analysis for imported models. This capability officially makes Energy3D a useful daylight and solar simulation tool for sustainable building design and analysis. Its ability to empower anyone to analyze virtually any 3D structure with an intuitive, easy-to-use interface and speedy simulation engines opens many opportunities to engage high school and college students (or even middle school students) in learning science and engineering through solving authentic, interesting real-world problems.
Fig. 2: Beverly Hills Tower (Qatar)

There is an ocean of 3D models of buildings, bridges, and other structures on the Internet (notably from SketchUp's 3D Warehouse, which provides thousands of free 3D models that can be exported to the COLLADA format). These models can be imported into Energy3D for analyses, which greatly enhances Energy3D's applicability in engineering education and practice.

Fig. 3: Solar analysis of various houses
The images in this post show examples of different types of buildings, including 30 St Mary Axe (the Gherkin) in London, UK (Figure 1) and the Beverly Hills Tower in Qatar (Figure 2). Figure 3 shows the analyses of a number of single-family houses. All the solar potential heat maps were calculated and generated based on the total solar radiation that each unit area on the building surfaces receive during the selected day (June 22).

These examples should give you some ideas about what the current version of Energy3D is already capable of doing in terms of solar energy analysis to support, for example, the design of rooftop solar systems and building solar facades.

In the months to come, I will continue to enhance this analytic capacity to provide even more powerful simulation and visualization tools. Optimization, which will automatically identify the boundary meshes (meshes that are on the building envelope), is currently on the way to increase the simulation speed dramatically.

New features in CODAP

Our Common Online Data Analysis Platform (CODAP) software provides an easy-to-use web-based data analysis tool, geared toward middle and high school students, and aimed at teachers and curriculum developers. CODAP is already full of amazing features. We’re excited to announce several new features! Continue reading

Why is Israel building the world’s tallest solar tower?

Fig. 1: Something tall in Negev desert (Credit: Inhabitat)
The Ashalim solar project (Figure 1) in the Negev desert of Israel will reportedly power 130,000 homes when it is completed in 2018. This large-scale project boasts the world’s tallest solar tower -- at 250 meters (820 feet), it is regarded by many as a symbol of Israel’s ambition in renewable energy.

Solar thermal power and photovoltaic solar power are two main methods of generating electricity from the sun that are somewhat complementary to each other. Solar tower technology is an implementation of solar thermal power that uses thousands of mirrors to focus sunlight on the top of a tower, producing intense heat that vaporizes water to spin a turbine and generate electricity. The physics principle is the same as a solar cooker that you have probably made back in high school.

Why does the Ashalim solar tower have to be so tall?

Surrounding the tower are approximately 50,000 mirrors that all reflect sun beams to the top of the tower. For this many mirrors to "see" the tower, it has to be tall. This is easy to understand with the following metaphor: If you are speaking to a large, packed crowd in a square, you had better stand high so that the whole audience can see you. If there are children in the audience, you want to stand even higher so that they can see you as well. The adults in this analogy represent the upper parts of mirrors whereas the children the lower parts. If the lower parts cannot reflect sunlight to the tower, the efficiency of the mirrors will be halved.

Fig. 2: Visualizing the effect of tower height
An alternative solution for the children in the crowd to see the speaker is to have everyone stay further away from the speaker (assuming that they can hear well) -- this is just simple trigonometry. Larger distances among people, however, mean that the square with a fixed area can accommodate less people. In the case of the solar power tower, this means that the use of the land will not be efficient. And land, even in a desert, is precious in countries like Israel. This is why engineers chose to increase the height of tower and ended up constructing the costly tall tower as a trade-off for expensive land.

Fig. 3: Daily output graphs of towers of different heights
But how tall is tall enough?

Fig. 4: Energy output vs. tower height
This depends on a lot of things such as the mirror size and field layout. The analysis is complicated and reflects the nature of engineering. With our Energy3D software, however, complicated analyses such as this are made so easy that even high school students can do. Not only does Energy3D provide easy-to-use 3D graphical interfaces never seen in the design of concentrated solar power, but it also provides stunning "eye candy" visualizations that clearly spell out the science and engineering principles in design time. To illustrate my points, I set up a solar power tower, copied and pasted to create an array of mirrors, linked the heliostats with the tower, and copied and pasted again to create another tower and another array of mirrors with identical properties. None of these tasks require complicated scripts or things like that; all they take are just some mouse clicks and typing. Then, I made the height of the second tower twice as tall as the first one and run a simulation. A few seconds later, Energy3D showed me a nice visualization (Figure 2). With only a few more mouse clicks, I generated a graph that compares the daily outputs of towers of different heights (Figure 3) and collected a series of data that shows the relationship between the energy output and the tower height (Figure 4). The graph suggests that the gain from raising the tower slows down after certain height. Engineers will have to decide where to stop by considering other factors, such as cost, stability, etc.

Note that, the results of the solar power tower simulations in the current version of Energy3D, unlike their photovoltaic counterparts, can only be taken qualitatively. We are yet to build a heat transfer model that simulates the thermal storage and discharge accurately. This task is scheduled to be completed in the first half of this year. By that time, you will have a reliable prediction software tool for designing concentrated solar power plants.

Learning Everywhere taking inspiration from two partners, At-Bristol and Exploradôme

Innovative applications of technology are found virtually everywhere, transforming all kinds of spaces into opportunities for STEM learning that move beyond the walls of classrooms and past schooltime hours. Persistent engagement and interest in meaningful learning activities and practices can spur an enduring pursuit of science.

Our Learning Everywhere initiative is exploring, prototyping, and creating new learning experiences—including exhibits, mobile apps, and user tracking technologies—that connect and coordinate learning across museums and bridge in-school and out-of-school time. To survey new learning spaces and interactive technologies, we visited two of our Learning Everywhere partners, At-Bristol and Exploradôme, as well as other science centers in the London and Paris areas, including the Science Museum of London and the City of Science and Industry at La Villette.

Chad Dorsey and Sherry Hsi at the entrance of At-Bristol Science Center.

Chad Dorsey and Sherry Hsi at the entrance of At-Bristol Science Center.

Donning our bracelets printed with unique barcode IDs at the entrance, we explored the many At-Bristol exhibits, scanning our bracelets to collect and compare our data with data from other visitors. At some stations, we learned how the creators of Wallace and Gromit, from Aardman Animations’ studios also in Bristol, made their great movies before creating our own stop-motion animations. A quick scan of our wrists saved these animations to a website where we could access them later. Other parts of our experience, from scatterplots of our height compared to other visitors to videos of ourselves on slow-motion “startle-cam” added themselves into our electronic portfolio during the visit. We even found ourselves wearing bee wings and performing a waggle dance to mimic bee behaviors in an exhibit about the mysterious lives of bees! This and other digital artifacts from our visit served as opportunities for further conversation and inquiry back home, and as a source of fun for our families. (Needless to say, the bee dance video was a source of great enjoyment, but it will not be showing up publicly on Instagram any time soon!)

At-Bristol Science Center’s animation exhibits area.

At-Bristol Science Center’s animation exhibits area.

Our visit to London coincided with the grand opening of Wonder Lab at the Science Museum of London. Our guide, Dave Patten, Head of New Media there, showed us the spacious, colorful interactive gallery designed to encourage visitors to collaborate, play, and learn from conversation. In another exhibition, Engineer Your Future, teens and young adults use their personal mobile devices in public gallery spaces to design vehicles, then launch and control them on a huge public screen! Other large-screen and combined physical-digital exhibits featured different design-oriented and competitive games on energy, vehicle design, and different engineering careers.

Science Museum of London’s WonderLab the evening before its grand opening.

Science Museum of London’s WonderLab the evening before its grand opening.

The many heads of Dave Patten from the Science Museum of London in a Wonder Lab exhibit.

The many heads of Dave Patten from the Science Museum of London in a Wonder Lab exhibit.

Moving farther south, we visited the Cité des Sciences et de l’Industrie in Paris, where an immense, airy space houses corners with multiple galleries of permanent and temporary exhibitions. Among them, designed areas invite reflection and discussion among school groups or individuals. In a highlight of the visit, François Vescia, Senior International Project Manager at the museum, gave us a tour of their fabrication laboratory, Carrefour Numerique. This public space is a wonderland of design and making, custom created to invite design collaboration and discussions that merge seamlessly into design and construction of physical prototypes and objects. Visitors access materials and machinery from e-textile design, milling machines, 3D printers, and laser and vinyl cutters to turn their visions into reality. Drop-in and scheduled programs and workshops and in-person support are available, and visitors can begin designing projects digitally in the multimedia lab, then move next door to fabricate them.

Chad Dorsey, Francois Vescia, and Sherry Hsi at Parc de la Villette, an area in Paris, known for the Cité des Sciences et de l'Industrie science museum.

Chad Dorsey, Francois Vescia, and Sherry Hsi at Parc de la Villette, an area in Paris, known for the Cité des Sciences et de l’Industrie science museum.

Entrance to the Fab Lab at the City of Sciences and Industry in Paris.

Entrance to the Fab Lab at the City of Sciences and Industry in Paris.

Taking the train to the southern suburbs of Paris, we visited the Exploradôme, where we met Goery Delacote, its founder and a longstanding member of the Concord Consortium Board of Trustees. Goery toured us among the great exhibits packed into the floor of this small museum, where the motto is “Not touching is not allowed!” Playing like kids (and some of us were!), we explored visual perception phenomena, dug holes for water in a version of the AR Sandbox Sherry helped create and worked together to launch six-foot smoke rings that rose to the ceiling.

Goery Delacôte, Sherry Hsi, and Chad Dorsey at the entrance of Exploradome in Vitry-sur-Seine south east of Paris. Colors from the building were selected from colors found around the local neighborhood.

Goery Delacôte, Sherry Hsi, and Chad Dorsey at the entrance of Exploradome in Vitry-sur-Seine south east of Paris. Colors from the building were selected from colors found around the local neighborhood.

The thoughtful curation and orchestration of interactive exhibits throughout our Learning Everywhere tour was inspiring, as was the innovative use of technology to engage visitors and extend museum experiences beyond the visit. As we collate and catalog these experiences and technologies as part of the project work, we look forward to working further with museums and other out-of-school institutions to bridge and extend learning everywhere.

Making smoke rings collaboratively at the Exploradome with Goery Delacôte and Sherry Hsi.

Making smoke rings collaboratively at the Exploradome with Goery Delacôte and Sherry Hsi.

Making virtual lakes by digging in the Augmented Reality Sandbox exhibit at the Exploradome.

Making virtual lakes by digging in the Augmented Reality Sandbox exhibit at the Exploradome.

Exploring optical illusions and visualization puzzles at the Exploradome with Goery Delacôte.

Exploring optical illusions and visualization puzzles at the Exploradome with Goery Delacôte.