Category Archives: Main Blog

3D model of Ulm Minster created in just one day using Energy3D

Although our Energy3D software is billed as a piece of building simulation and engineering software, it has also become a powerful tool for constructing 3D models of buildings. With even more enhancements in the latest version (v 5.3.2), users can create incredibly complex structures in a short time.

Guanhua Chen, a graduate student from the University of Miami in Florida who joined my team this week as a summer intern, created an unbelievably detailed model of Ulm Minster -- in JUST ONE DAY. In total, his model has 373 elements.

Considering that he is very new to Energy3D (though he previously had some experiences with Maya and Unity3D), this somehow indicates just how easy Energy3D may be for 3D modeling, especially for novices. (As a matter of fact, I must confess that we cheated a bit because, as he was working on it, I rushed to add new features to the software on the fly to address his complaints. Then he just restarted the program and got onto a more performant version).


This capability will be extremely useful for engineering design, which must address both structure and function and their relationship. Being able to create complex structures rapidly and then study their functions based on the building simulation and solar simulation engines of Energy3D allows users to explore many design options and test them immediately, a feature that is critically important to engineering education.







5 Reasons to Vote in STEM For All Video Showcase

We’re thrilled to present five videos in the National Science Foundation STEM for All Video Showcase from May 17 to 23! We invite you to view the videos and join the conversation about the latest research in STEM and computer science teaching and learning. Please vote for our videos through Facebook, Twitter, or email!

CODAPCODAP

Data are everywhere, except in the classroom! Learn how our Common Online Data Analysis Platform (CODAP) is bringing more rich experiences with data to more teachers and students.

Watch Now

Teaching TeamworkTeaching Teamwork

Collaboration is highly valued in the 21st century workplace. Our Teaching Teamwork project is measuring how effectively electronics students work in teams.

Watch Now

GeniverseGeniConnect & GeniGUIDE

Geniverse engages students in exploring heredity and genetics by breeding virtual dragons. GeniConnect connects afterschool students with biotech scientists to play Geniverse together. In GeniGUIDE, we’re adding an intelligent tutoring system to Geniverse, supporting students and relaying information to the most intelligent tutor in the room – the teacher.

Watch Now

Teaching Environmental Sustainability with Model My WatershedTeaching Environmental Sustainability
with Model My Watershed

Teaching Environmental Sustainability with Model My Watershed is developing place-based, problem-based, hands-on set tools aligned to NGSS to promote geospatial literacy and systems thinking for middle and high school students.

Watch Now

GRASPGRASP

GRASP (Gesture Augmented Simulations for Supporting Explanations) is investigating how middle school students use body movement to build deeper reasoning about critical science concepts.

Watch Now

Making sense of non-optimal solar panel orientations seen on Google Maps


Figure 1: Google Map
If you are thinking about putting solar panels on your roof, the conventional wisdom is that your house probably would be automatically disqualified if its roof does not have a large south-facing side for installing solar panels. If you have no idea about this, the sales representatives from solar companies would probably tell you this based on their training.

While it might be a smart strategy to target houses with most promising returns at the beginning of the solar energy industry back a decade ago, the old rules may not hold any longer. With the solar cell efficiency of commercial panels climbing above 20% and, more importantly, the environmental awareness of homeowners increasing, the solar energy market has changed a lot.

Thanks to Google Map, it is just a few mouse clicks away to get an idea about the current status of the market. So I surveyed my neighborhoods in eastern Massachusetts and was surprised to find that a significant amount of rooftop solar panel arrays do not actually face south (Figure 1). This is understandable because a significant percentage of buildings do not have a roof that has a south-facing side. So if homeowners living in those houses want to contribute to solving the environmental problems, they do not have any other choice except putting solar panels wherever they can be mounted. If you take a look at your own neighborhood in Google Map, you should spot a lot of west- and east-facing (or even north-facing!) solar panels.

Figure 2. Solar simulation in Energy3D
Figure 3: South-facing vs. west-facing
I have heard some solar installers accusing competitors of coaxing homeowners into this kind of less effective configurations in order to increase their profits at the expense of the homeowners' running cost. Before we start pointing fingers at one another, let's stop and think: Is it really such a horrible idea to put solar panels on a non-south-facing side? The problem is that few people really have an idea about how much less energy those non-ideal configurations would entail compared with the optimal south-facing situation. An estimate of this is critically important to helping homeowners make up their mind whether to go solar or not. And, by the way, it also demonstrates your business ethics and technical capability as well. Unfortunately, in reality, you cannot re-orient people's houses or roofs to figure that out.

Thanks to the funding from the National Science Foundation, this kind of estimation can be easily done using our Energy3D software, which has a decent crystal ball when it comes to solar modeling and prediction (Figure 2). I have been blogging about this capacity of the software for a while. It is time to finally put this tool into practice to help people evaluate their solar options.


Let's start with a very simple house and a 5kW solar panel system (Figure 3). The first step is to get a sense of how accurate Energy3D's prediction may be. In situations similar to the standard test conditions (STC), this system -- when oriented to the south -- should generate about 6,000 kWh per year in Boston, Massachusetts and about 8,000 kWh per year in Los Angeles, California. The results from Energy3D agree exactly with these widely-cited numbers, as shown in Figure 4.

Figure 4: BOS vs. LAX
With this validity, we can then ask the following question: What if we have only a west-facing roof? This can be easily done by rotating the model house in Energy3D 90° and then redo the calculation. It turns out that the homeowner in Boston will get about 80% of the maximal output (when the panels face south), as illustrated in Figure 5. The folks in LA will fare slightly better -- about 82%.

Figure 5: South-facing vs. west-facing outputs
I believe a large number of homeowners, if informed by the results of this simulation-based analysis, may consider 20% performance reduction as acceptable. Yes, their panels will generate less electricity than those on the roofs of houses with the optimal orientation, but many would like to do whatever they can to help reduce carbon emission. To them, doing it at a pace that is 20% slower is infinitely better than doing nothing at all, letting alone that many houses do not face exactly west and the actual performance reduction will be less than 20%.

The results of this study should give you a sense about how simulations may be useful in fostering the growth of the solar energy market. Even better, through years of development, we have made solar simulation in Energy3D so easy that anyone can do it. As an experimental step, we are now collaborating with high schools in Massachusetts to pilot-test the feasibility of engaging students to evaluate the solarization potential of their own houses. Our goal is to create an integrated education-business model that benefits both sides. We hope that the success of this project will help the world reach the goals set by the Paris Agreement.

High-Adventure Science Partnership with National Geographic Education

We are excited to announce that the Concord Consortium’s High-Adventure Science modules are now available on the National Geographic Education website, thanks to a National Science Foundation-funded partnership with National Geographic Education. High-Adventure Science modules have been used by thousands of students so far, and we welcome the opportunity to share our modules with a wider audience of middle and high school teachers and students. All modules will continue to be available on the High-Adventure Science website.

High-Adventure Science: Bringing contemporary science into the classroom

Each week-long High-Adventure Science module is built around an important unanswered question in Earth or environmental science; topics include fresh water availability, climate change, the future of our energy sources, air quality, land management, and the search for life in the universe.

Throughout each module, students learn about the framing question, experiment with interactive computer models, analyze real world data, and attempt to answer the same questions as research scientists. We don’t expect that students will be able to answer the framing questions at the end of the module (after all, scientists are still working to answer them!); rather, we want to engage students in the process of doing science, building arguments around evidence and data and realizing that not knowing the answers (uncertainty) drives scientific progress.

To that end, each module (and associated pre- and post-tests) contains several scientific argumentation item sets. The argumentation item set, with multiple-choice and open-ended questions, prompts students to consider the strengths and weaknesses of the provided data (graphs, models, tables, or text). Our research has shown that, after using High-Adventure Science modules, students improve both their understanding of the science content and their scientific argumentation skills. Register for a free account on the High-Adventure Science portal for access to pre- and post-tests.

Expanded teacher resources through National Geographic Education

Partnering with National Geographic Education has allowed us to provide more support for teachers. On the National Geographic Education website, you’ll find in-depth teaching tips, background information, vocabulary definitions, and links to the standards (NSES, Common Core, ISTE, and NGSS) to which our curricula are aligned. Additionally, each module is linked to related resources in the National Geographic catalog, greatly expanding the resources available to both teachers and students.

Teachers have been excited about the models, real world data, and the argumentation prompts that get students to focus on the evidence when making a scientific claim. (You can hear directly from one of the High-Adventure Science field test teachers at NSTA!)

Come see us at NSTA in Nashville, TN, this week! Stop by the National Geographic booth or come to a presentation about using High-Adventure Science modules in your classroom:

  • “High-Adventure Science: Free Simulations Exploring Earth’s Systems and Sustainability” on Thursday, March 31, from 12:30-1:00 PM in Music City Center, 106A
  • “Integrating Literacy Standards in Science” on Sunday, April 3, from 8:00-9:00 AM in Music City Center, 209A

 

An infrared investigation on a Stirling engine

Figure 1
The year 2016 marks the 200th anniversary of an important invention of Robert Stirling -- the Stirling engine. So I thought I should start this year's blogging with a commemoration article about this truly ingenious invention.

A Stirling engine is a closed-cycle heat engine that operates by cyclic compression and expansion of air or other gas by a temperature difference across the engine. A Stirling engine is able to convert thermal energy into mechanical work.

You can buy an awesome toy Stirling engine from Amazon (perhaps next Christmas's gift for some inquisitive minds). If you put it on top of a cup of hot water, this amazing machine will just run until the hot water cools down to the room temperature.

Figure 2
Curious about whether the Stirling circle would actually accelerate the cooling process, I filled hot water into two identical mugs and covered one of them with the Stirling engine. Then I started the engine and observed what happened to the temperature through an IR camera. It turned out that the mug covered by the engine maintained a temperature about 10 °C higher than the open mug in about 30 minutes of observation time. If you have a chance to do this experiment, you probably would be surprised. The flying wheel of the Stirling engine seems to be announcing that it is working very hard by displaying fast spinning and making a lot of noise. But all that energy, visual and audible as it is, is no match to the thermal energy lost through evaporation of water from the open hot mug (Figure 1).

How about comparing the Stirling engine with heat transfer? I found a metal box that has approximately the same size and same thickness with our Stirling engine. I refilled the hot water to the two mugs and covered one with the metal box and the other with the Stirling engine. Then I started the engine and tracked their temperatures through the IR camera. It turned out that the rates of heat loss from the two mugs were about the same in about 30 minutes of observation. What this really means is that the energy that drove the engine was actually very small compared with the thermal energy that is lost to the environment through heat transfer (Figure 2).

This is understandable because the speed of the flying wheel is only a small fraction of the average speed of molecules (which is about the speed of sound or higher). This investigation also suggests that the Stirling engine is very efficient. Had we insulated the mug, it would have run for hours.

Chemical imaging using infrared cameras

Figure 1: Evaporative cooling
Scientists have long relied on powerful imaging techniques to see things invisible to the naked eye and thus advance science. Chemical imaging is a technique for visualizing chemical composition and dynamics in time and space as actual events unfold. In this sense, infrared (IR) imaging is a chemical imaging technique as it allows one to see temporal and spatial changes of temperature distribution and, just like in other chemical imaging techniques, infer what is occurring at the molecular level based on these information.

Figure 2: IR imaging
Most IR cameras are sensitive enough to pick up a temperature difference of 0.1°C or less. This sensitivity makes it possible to detect certain effects from the molecular world. Figure 1 provides an example that suggests this possibility.

This experiment, which concerns evaporation of water, cannot be simpler: Just pour some room-temperature water into a plastic cup, leave it for a few hours, and then aim an IR camera at it. In stark contrast to the thermal background, the whole cup remains 1-2°C cooler than the room temperature (Figure 2). About how much water evaporation is enough to keep the cup this cool? Let’s do a simple calculation. Our measurement showed that in a typical dry and warm office environment in the winter, a cup of water (10 cm diameter) loses approximately six grams of water in 24 hours. That is to say, the evaporation rate is 7×10-5 g/s or 7×10-11 m3/s. Divided by the surface area of the cup mouth, which is 0.00785 m2, we obtain that the thickness of the layer of water that evaporates in a second is 8.9 nm—that is roughly the length of only 30 water molecules lining up shoulder to shoulder! It is amazing to notice that just the evaporation of this tiny amount of water at such a slow rate (a second is a very long time for molecules) suffices to sustain a temperature difference of 1-2°C for the entire cup. 

This simple experiment actually raises more questions than it answers. Based on the latent heat of vaporization of water, which is about 2265 J/g, we estimate that the rate of energy loss through evaporation is only 0.16 J/s. This rate of energy loss should have a negligible effect on the 200 g of water in the cup as the specific heat of water is 4.186 J/(g×°C). So where does this cooling effect come from? How does it persist? Would the temperature of water be even lower if there is less water in the cup? What would the temperature difference be if the room temperature changes? These questions pose great opportunities to engage students to propose their hypotheses and test them with more experiments. It is through the quest to the answers that students learn to think and act like scientists.

IR imaging is an ideal tool for guided inquiry as it eliminates the tedious data collection procedures and focuses students on data analysis. In the practice of inquiry, data analysis is viewed as more important than data collection in helping students develop their thinking skills and conceptual understandings. Although this cooling effect can also be investigated using a thermometer, students’ perception might be quite different. An IR camera immediately shows that the entire cup, not just the water surface, is cooler. Seeing the bulk of the cup in blue color may prompt students to think more deeply and invite new questions, whereas a single temperature reading from a thermometer may not deliver the same experience.

Scientists use Energy2D to simulate the effect of micro flow on molecular self-assembly

Copyright: ACS Nano, American Chemical Society
Self-assembled peptide nanostructures have unique properties that lead to applications in electrical devices and functional molecular recognition. Exactly how to control the self-assembly process in a solution is a hot research topic. Since a solution is a fluid, a little fluid mechanics would be needed to understand how micro flow affects the self-assembly of the peptide molecules.

ACS Nano, a journal of the American Chemical Society, published a research article on December 11 that includes a result of using our Energy2D software to simulate turbulent situations in which the non-uniform plumes rising from the substrate result in the formation of randomly arranged diphenylalanine (FF) rods and tubes. This paper, titled "Morphology and Pattern Control of Diphenylalanine Self-Assembly via Evaporative Dewetting," is the result of collaboration between scientists from Nanjing University and the City University of Hong Kong.

We are absolutely thrilled by the fact that many scientists have used Energy2D in their work. As far as we know, this is the second published scientific research paper that has used Energy2D.

On a separate avenue, many engineers are already using Energy2D to aid their design work. For example, in a German forum about renewable energy, an engineer has recently used the tool to make sense of his experimental results with various air collector designs. He reported that the results are "confirmed by the experiences of several users: pressure losses and less volume of air in the blowing operation" (translated from German using Google Translate).

It is these successful applications of Energy2D in the real world that will make it a relevant tool in science and engineering for a very long time.

Energy3D V5.0 released

Full-scale building energy simulation
Insolation analysis of a city block
We are pleased to announce a milestone version of our Energy3D CAD software. In addition to fixing numerous bugs, Version 5.0 includes numerous new features that we have recently added to the software to enhance its already powerful concurrent design, simulation, and analysis capabilities.

For example, we have added cut/copy/paste in 3D space that greatly eases 3D construction. With this functionality, laying an array of solar panels on a roof is as simple and intuitive as copying and pasting an existing solar panel. Creating a village or city block is also made easier as a building can be copied and pasted anywhere on the ground -- you can create a number of identical buildings using the copy/paste function and then work to make them different.

Insolation analysis of various houses
Compared with previous versions, the properties of every building element can now be set individually using the corresponding popup menu and window. Being able to set the properties of an individual element is important as it is often a good idea for fenestration on different sides of a building to have different solar heat gain coefficients. The user interface for setting the solar heat gain coefficient, for instance, allows the user to specify whether he or she wants to apply the value to the selected window, all the windows on the selected side, or the entire building.

In a move to simulate machine-learning thermostats such as Google's Nest Thermostat to test the assertion that they can help save energy, we have added programmable thermostats. We have also added a geothermal model that allows for more accurate simulation of heat exchange between a building and the ground. New efforts for modeling weather and landscape more accurately are already on the way.

The goal of Energy3D is to create a software platform that bridges education and industry -- we are already working with leading home energy companies to bring this tool to schools and workplaces. This synergy has led to some interesting and exciting business opportunities that mutually benefit education and industry.

A bonus of this version is that it no longer requires users to install Java. We have provided a Windows installer and a Mac installer that work just like any other familiar software installer. Users should now find it easy to install Energy3D, compared with the previously problematic Java Web Start installer.

Building data science fluency using games

The National Science Foundation has awarded the Concord Consortium a three-year Cyberlearning grant to develop and test new data science games for high school biology, chemistry, and physics, and research how learners conceive of and learn with data. The Data Science Games project builds on prior work, which led to the invention of a new genre of learning technology—a “data science game.”

The use of games for education is a growing field with significant promise for STEM learning. Games provide a powerful means of motivation and engagement, and align with many STEM learning goals. Data Science Games is making use of the data generated as students play digital games in a novel and creative way. When students play a data science game, their gameplay actions generate data—data that is essential to the game itself. To succeed at a data science game, students must visualize, understand, and properly apply the data their game playing has generated in order to “level up” and progress within the game. As they visualize and analyze the data, planning and plotting new, evolving strategies, students learn the fundamentals of data science.

The new data science games will be embedded in our open source Common Online Data Analysis Platform (CODAP). Data from the games will flow seamlessly into CODAP thanks to innovations that leverage advances in the interoperability of components embedded in browsers, new capabilities for data visualization using HTML5, and recent innovations in design of interfaces compatible with both PC-based browsers and touch devices.

Project research will investigate ways this new genre of educational technology can be integrated into classroom learning. We will identify and characterize learner perceptions of data, including how learners see flat, hierarchical, and network structures as emerging from realistic problems; questions learners ask with data; and learning trajectories for restructuring and visualization of data.

The project will also produce guidelines for making use of data science games across a range of grade levels and subject matter. Data Science Games will thus provide both models and templates of how to integrate learning of data science into existing content areas, helping to grow the next generation of data scientists.

Data Science Games Play Roshambo against the evil Dr. Markov (log in as guest). If you win, you can save Madeline the dog. Improve your odds by analyzing Markov’s moves in a graph.

Play Roshambo
(log in as guest)

Solarizing a house in Energy3D

Fig. 1 3D model of a real house near Boston (2,150 sq ft).
On August 3, 2015, President Obama announced the Clean Power Plan – a landmark step in reducing carbon pollution from power plants that takes real action on climate change. Producing clean energy from rooftop solar panels can greatly mitigate the problems in current power generation. In the US, there are more than 130 million homes. These homes, along with commercial buildings, consume more than 40% of the total energy of the country. With improving generation and storage technologies, a large portion of that usage could be generated by home buildings themselves.

A practical question is: How do we estimate the energy that a house can potentially generate if we put solar panels on top of it? This estimate is key to convincing homeowners to install solar panels or the bank to finance it. You wouldn't buy something without knowing its exact benefits, would you? This is why solar analysis and evaluation are so important to the solar energy industry.

The problem is: Every building is different! The location, the orientation, the landscape, the shape, the roof pitch, and so on, vary from one building to another. And there are over 100 MILLION of them around the country! To make the matter even more complicated, we are talking about annual gains, which require the solar analyst to consider solar radiation and landscape changes in four seasons. With all these complexities, no one can really design the layout of solar panels and calculate their outputs without using a 3D simulation tool.

There may be solar design and prediction software from companies like Autodesk. But for three reasons, we believe that our Energy3D CAD software will be a relevant tool in this marketplace. First, our goal is to enable everyone to use Energy3D without having to go through the level of training that most engineers must go through with other CAD tools in order to master them. Second, Energy3D is completely free of charge to everyone. Third, the accuracy of Energy3D's solar analysis is comparable with that of others (and is improving as we speak!).

With these advantages, it is now possible for homeowners to evaluate the solar potential of their houses INDEPENDENTLY, using an incredibly powerful scientific simulation tool that has been designed for the layperson.

In this post, I will walk you through the solar design process in Energy3D step by step.

1) Sketch up a 3D model of your house

Energy3D has an easy-to-use interface for quickly constructing your house in a 3D environment. With this interface, you can create an approximate 3D model of your house without having to worry about details such as interiors that are not important to solar analysis. Improvements of this user interface are on the way. For example, we just added a handy feature that allows users to copy and paste in 3D space. This new feature can be used to quickly create an array of solar panels by simply copying a panel and hitting Ctrl/Command+V a few times. As trees are important to the performance of your solar panels, you should also model the surrounding trees by adding various tree objects in Energy3D. Figure 1 shows a 3D model of a real house in Massachusetts, surrounded by trees. Notice that this house has a T shape and its longest side faces southeast, which means that other sides of its roof may worth checking.
Fig. 2 Daily solar radiation in four seasons

2) Examine the solar radiation on the roof in four seasons

Once you have a 3D model of your house and the surrounding trees, you should take a look at the solar radiation on the roof throughout the year. To do this, you have to change the date and run a solar simulation for each date. For example, Figure 2 shows the solar radiation heat maps of the Massachusetts house on 1/1, 4/1, 7/1, and 10/1, respectively. Note that the trees do not have leaves from the beginning of December to the end of April (approximately), meaning that their impacts to the performance of the solar panels are minimal in the winter.

The conventional wisdom is that the south-facing side of the roof is a good place to put solar panels. But very few houses face exact south. This is why we need a simulation tool to analyze real situations. By looking at the color maps in Figure 2, we can quickly figure out that the southeast-facing side of the roof of this house is the optimal side for solar panels and we also know that the lower part of this side is shadowed significantly by the surrounding trees.

Fig. 3 Solarizing the house
3) Add, copy, and paste solar panels to create arrays

Having decided which side to lay the solar panels, the next step is to add them to it. You can drop them one by one. Or drop the first one near an edge and then copy and paste it to easily create an array. Repeat this for three rows as illustrated in Figure 3. Note that I chose the solar panels that have a light-electricity conversion efficiency of 15%, which is about average in the current market. New panels may come with higher efficiency.

The three rows have a total number of 45 solar panels (3 x 5 feet each). From Figure 2, it also seems the T-wing roof leaning towards west may be a sub-optimal place to go solar. Let's also put a 2x5 array of panels on that side. If the simulation shows that they do not worth the money, we can just delete them from the model. This is the power of the simulation -- you do not have to pay a penny for anything you do with a virtual house (and you do not have to wait for a year to evaluate the effect of anything you do on its yearly energy usage).

4) Run annual energy analysis for the building

Fig. 4 Energy graphs with added solar panels
Now that we have put up the solar panels, we want to know how much energy they can produce. In Energy3D, this is as simple as selecting "Run Annual Energy Analysis for Building..." under the Analysis Menu. A graph will display the progress while Energy3D automatically performs a 12-month simulation and updates the results (Figure 4).

I recommend that you run this analysis every time you add a row of solar panels to keep track of the gains from each additional row. For example, Figure 4 shows the changes of solar outputs each time we add a row (the last one is the 10 panels added to the west-facing side of the T-wing roof). The following lists the annual results:
  • Row 1, 15 panels, output: 5,414 kWh --- 361 kWh/panel
  • Row 2, 15 panels, output: 5,018 kWh (total: 10,494 kWh) --- 335 kWh/panel
  • Row 3, 15 panels, output: 4,437 kWh (total: 14,931 kWh) --- 296 kWh/panel
  • T-wing 2x5 array, 10 panels, output: 2,805 kWh (total: 17,736 kWh) --- 281 kWh/panel
These results suggest that 30 panels in Rows 1 and 2 are probably a good solution for this house -- they generate a total of 10,494 kWh in a year. But if we have better (i.e., high efficiency) and cheaper solar panels in the future, adding panels to Row 3 and the T-wing may not be such a bad idea.

Fig. 5 Comparing solar panels at different positions
5) Compare the solar gains of panels at different positions

In addition to analyze the energy performance of the entire house, Energy3D also allows you to select individual elements and compare their performances. Figure 5 shows the comparison of four solar panels at different positions. The graph shows that the middle positions in Row 3 are not good spots for solar panels. Based on this information, we can go back to remove those solar panels and redo the analysis to see if we will have a better average output of Row 3.

After removing the five solar panels in the middle of Row 3, the total output drops to 16,335 kWh, meaning that the five panels on average output 280 kWh each.

6) Decide which positions are acceptable for installing solar panels

The analysis results thus far should provide you enough information with regard to whether it worth your money to solarize this house and, if yes, how to solarize it. The real decision depends on the cost of electricity in your area, your budget, and your expectation of the return of investment. With the price of solar panel continuing to drop, the quality continues to improve, and the pressure to reduce fossil energy usage continues to increase, building solarization is becoming more and more viable.

Solar analysis using computational tools is typically considered as the job of a professional engineer as it involves complicated computer-based design and analysis. The high cost of a professional engineer makes analyzing and evaluating millions of buildings economically unfavorable. But Energy3D reduces this task to something that even children can do. This could lead to a paradigm shift in the solar industry that will fundamentally change the way residential and commercial solar evaluation is conducted. We are very excited about this prospect and are eager to with the energy industry to ignite this revolution.