Author Archives: Charles Xie

Virtual Solar Grid adds Crescent Dunes Solar Tower

The Crescent Dues Solar Tower as modeled in Energy3D
A light field visualization in Energy3D
A top view
The Crescent Dunes Solar Power Tower is a 110 MW utility-scale concentrated solar power (CSP) plant with 1.1 GWh of molten salt energy storage, located about 190 miles northwest of Las Vegas in the United States (watch a video about it). The plant includes a whopping number of 10,347 large heliostats that collect and focus sunlight onto a central receiver at the top of a 195-meter tall tower to heat 32,000 tons of molten salt. The molten salt circulates from the tower to some storage tanks, where it is then used to produce steam and generate electricity. Excess thermal energy is stored in the molten salt and can be used to generate power for up to ten hours, providing electricity in the evening or during cloudy hours. Unlike other CSP plants, Crescent Dunes' advanced storage technology eliminates the need for any backup fossil fuels to melt the salt and jumpstart the plant in the morning. Each heliostat is made up of 35 6×6 feet (1.8 m) mirror facets, adding up to a total aperture of 115.7 square meters. The total solar field aperture sums to an area of 1,196,778 square meters, or more than one square kilometer, in a land area of 1,670 acres (6.8 square kilometers). That is, the plant is capable of potentially collecting one seventh of all the solar energy that shines onto the field. Costing about $1 billion to construct, it was commissioned in September 2015.

A close-up view of accurate modeling of heliostat tracking
Since its inception in January 2018, our Virtual Solar Grid has included the Energy3D models of nearly all the existing large CSP power plants in the world. That covers more than 80 large CSP plants capable of generating more than 11 TWh per year. The ultimate goal of the Virtual Solar Grid is to mirror every solar energy system in the world in the computing cloud through crowdsourcing involving a large number of students interested in engineering, creating an unprecedentedly detailed computational model for learning how to design a reliable and resilient power grid based completely on renewable energy (solar energy in this phase). The modeling of the Crescent Dunes plant has put our Energy3D software to a stress test. Can it handle such a complex project with so many heliostats in such a large field?
A side view

Near the base of the tower
Over the shoulder of the tower
The solar field
This became my President's Day project. To make this happen, I had to first increase the resolution of Google Maps images supported in Energy3D. A free developer account of Google Maps can only get images of 640 × 640 pixels. When you are looking at an area that is as big as a few square kilometers, that resolution gets you very blurry images. To fetch high-resolution images from Google without paying them, I had to basically make Energy3D download many more images and then knit them together to create a large image that forms an Earth canvas in Energy3D (hence you see a lot of Google logos and copyrights in the ground image that I could not get rid of from each patch). Once I had the Earth canvas, I then drew heliostats on top of it (that is, one by one for more than 10,000 times!) and compared their orientations and shadows rendered by Energy3D with those shown in the Google Maps images. Now, the problem is that Google doesn't tell you when the satellite image was taken. But based on the shadows of the tower and other structures, I could easily figure out an approximate time and date. I then set that time and date in Energy3D and confirmed that the shadow of the tower in the Energy3D model overlaps with that in the satellite image. After this calibration, every single virtual heliostat that I copied and pasted then automatically aligned with those in the satellite image (as long as the original copy specifies the tower that it points to), visually testifying that the tracking algorithm for the virtual heliostats in Energy3D is just as good as the one used by the computers that control the motions of the real-world heliostats. Matching the computer model with the satellite image is essential as the procedure ensures the accuracy of our numerical simulation.

The solar field
After making numerous other improvements for Energy3D, the latest version (V7.8.4) was finally capable of modeling this colossal power plant. This includes the capability of being able to divide the whole project into nine smaller projects and then allow Energy3D to stitch the smaller 3D models together to create the full model using the Import Tool. This divide-and-conquer method makes the user interface a lot faster as neither you nor Energy3D need to deal with 9,000 existing heliostats while you are adding the last 1,000. The predicted annual output of the plant by Energy3D is 462 GWh, as opposed to the official projection of 500 GWh, assuming 90% of mirror reflectance and 25% of thermal-to-electric conversion.

One thing I had to do, though, was to double the memory requirement for the software from the default 256 MB to 512 MB for the Windows version (the Mac version is fine), which would make the software fail on really old computers that have only 256 MB of total memory (but I don't think such old computers would still work properly today anyways). The implication of this change is that, if you are a Windows user and have installed Energy3D before, you will need to re-install it using the latest installer from our website in order to take advantage of this update. If you are not sure, there is a way to know how much memory your Energy3D is allocated by checking the System Information and Preferences under the File Menu. If that number is about 250 MB, then you have to re-install the software -- if you really want to see the spectacular Crescent Dunes model in Energy3D without crashing it.

With basically only the three Ivanpah Solar Towers left to be modeled and uploaded, the Virtual Solar Grid has nearly incorporated all the operational solar thermal power plants in the world. We will continue to add new CSP plants as they come online and show up in Google Maps. In our next phase, we will move to add more photovoltaic (PV) solar power plants to the Virtual Solar Grid. At this point, the proportion of the modeled capacity from PV stands at only 8% in the Virtual Solar Grid, compared with 92% from CSP. Adding PV power plants will really require crowdsourcing as there are many more PV projects in the world -- there are potentially millions of small rooftop systems in existence. On a separate avenue, the National Renewable Energy Laboratory (NREL) has estimated that, if we add solar panels to every square feet of usable roof area in the U.S., we could meet 40% of our total electricity need. Is their statement realistic? Perhaps only time can tell, but by adding more and more virtual solar power systems to the Virtual Solar Grid, we might be able to tell sooner.

Virtual Solar Grid comes online

Fig. 1: Modeled output of the Virtual Solar Grid
Fig. 2: A residential rooftop PV system.
If you care about finding renewable energy solutions to environmental problems, you probably would like to join an international community of Energy3D users to model existing or design new solar power systems in the real world and contribute them to the Virtual Solar Grid — a hypothetical power grid that I am developing from scratch to model and simulate interconnected solar energy systems and storage. My ultimate goal is to crowdsource an unprecedented fine-grained, time-dependent, and multi-scale computational model for anyone, believer or skeptic of renewables, to study how much of humanity's energy need can be met by solar power generation on the global scale — independent of any authority and in the spirit of citizen science. I have blogged about this ambitious plan before and I am finally pleased to announce that an alpha version of the Virtual Solar Grid has come online, of course, with a very humble beginning.

Fig. 3: The Micky Mouse solar farm in Orlando, FL.
Fig. 4: NOOR-1 parabolic troughs in Morocco.
As of the end of January, 2018, the Virtual Solar Grid has included 3D models of only a bit more than 100 solar energy systems, ranging from small rooftop photovoltaic solar panel arrays (10 kW) to large utility-scale concentrated solar power plants (100 MW) in multiple continents. At present, the Virtual Solar Grid has a lot of small systems in Massachusetts because we are working with many schools in the state.

With this initial capacity, the Virtual Solar Grid is capable of generating roughly 4 TWh per year, approximately 0.02% of all the electricity consumed by the entire world population in 2016 (a little more than 2 PWh). Although 0.02% is too minuscule to count, it nonetheless marks the starting point of our journey towards an important goal of engaging and supporting anyone to explore the solar energy potential of our planet with serious engineering design. In a sense, you can think of this work as inventing a "Power Minecraft" that would entice people to participate in a virtual quest for switching humanity's power supply to 100% renewable energy.

Fig. 5: Khi Solar One solar power tower in South Africa.
Fig. 6: PS 10 and PS 20 in Spain.
The critical infrastructure underlying the Virtual Solar Grid is our free, versatile Energy3D software that allows anyone from a middle school student to a graduate school student to model or design any photovoltaic or concentrated solar power systems, down to the exact location and specs of individual solar panels or heliostats. Performance analysis of solar power systems in Energy3D is based on a growing database of solar panel brand models and weather data sets for nearly 700 regions in every habitable continent. To construct a grid, micro or global, an Energy3D model can be geotagged — the geolocation is automatically set when you import a Google Maps image into an Energy3D model. Such a virtual model, when uploaded to the Virtual Solar Grid, will be deployed to a Google Maps application that shows exactly where it is in the world and how much electricity it produces at a given hour on a given day under average weather conditions. This information will be used to investigate how solar power and other renewables, with thermal and electric storage, can be used to provide base loads and meet peak demands for a power grid of an arbitrary size, so to speak.

Finally, it is important to note that the Virtual Solar Grid project is generously funded by the U.S. National Science Foundation through grant number #1721054. Their continuous support of my work is deeply appreciated.

Energy2D used as a simulation tool in astrobiology research

Fig. 1: Frasassi Caves, Italy (credit: Astrobiology)
Deposition of minerals in caves may be affected by microbes. Geochemical analysis of these minerals can reveal biosignatures of subsurface life on a planet such as the Mars. Research in this area can help NASA build subsurface life probes for future planetary missions.

Fig. 2: Energy2D simulations (credit: Astrobiology)
Astrobiology, a peer-reviewed scientific journal covering research on the origin, evolution, distribution and future of life across the universe, just published a research paper titled "Transport-Induced Spatial Patterns of Sulfur Isotopes (δ34S) as Biosignatures" by a group of researchers at Pennsylvania State University, the University of Texas at El Paso, and Rice University. The lead author is Dr. Muammar Mansor. The researchers analyzed sample sites in the Frasassi Caves, Italy (Figure 1) and used Energy2D to simulate the effects of convection and diffusion on the chemical deposition processes (Figure 2). According to the paper, the results of the deposition simulated using Energy2D are consistent with the data collected from the cave sites, suggesting the importance of the effect of natural convection.

This is the second paper that uses Energy2D in astrobiology research (and the 16th published paper that used Energy2D in scientific research to simulate a natural or man-made system). In the first paper, Energy2D was used to simulate the thermal conditions for the origin of life. Once again, the publication of this paper provides fresh evidence for the broader impacts of our work.

Energy3D uses intelligent agents to create adaptive feedback based on analyzing the "DNA of design"

Fig. 1: A simple case of teaching thermal insulation.
Energy3D is a "smart" CAD tool because it can monitor the designer's behavior in real time, based on which it can generate feedback to the designer to regulate the design behavior. This capacity has tremendous implications to learning and teaching scientific inquiry and engineering design with open-ended nature that requires, ideally, one-to-one tutoring so intense that no teacher can easily provide in real classrooms.

The computational mechanism for generating feedback in Energy3D is based on intelligent agents, which consist of sensors and actuators (in very generic terms). In Energy3D, all the events are logged behind the scenes. The events provide the raw data stream from which various sensors produce signals based on subsets of the raw data. For instance, a sensor can be created to monitor any event related to solar panels of a house. An agent then uses a decision tree model to determine which actuators should be called to provide feedback to the user or direct Energy3D to change its state. For instance, if a solar panel is detected to be placed on the north-facing roof, the agent can remind the designer to rethink about the decision. Just like what a teacher may do, the agent can even suggest a comparative analysis between a solar panel on the north-facing roof and a solar panel on the south-facing or west-facing roof. Although this type of inquiry and design can be also taught using directly scaffolded instruction that guides students to explore step by step, in practice we have found the effect of this approach often diminishes because many students do not read instruction carefully enough and remember them long enough. It is also challenging for teachers to guide the whole class through this kind of long learning process as students often pace differently. Adaptive feedback provides a way to help students only when they need or just when a need is detected, thus providing a better chance to deliver effective instruction.

Let's look at a very simple example. Figure 1 shows a learning activity, the goal of which is to teach how the thermal property of a wall, called the U-value, affects the energy use of a house. Many students may walk away with a shallow understanding that the higher the U-value is, the more energy a house uses. The challenge is to help them deepen their understanding. For example, how can we make sure that students will collect enough data points to discover that the energy a house uses is proportional to the U-value? How can we support them to find out that the relationship is independent of seasonal change, wall orientation, and solar radiation (e.g., a lower U-value is good in both summer and winter, irrespective of whether or not the wall faces the sun). Helping students accomplish this level of understanding through inquiry-based activities is by no means a trivial task, even in this seemingly simple example. Let's explore what we may do in Energy3D now that we have a way to monitor students' interactions with it.

Fig. 2: An event sequence coded like a DNA sequence.
In nearly all software that support learning and teaching, the events during a process can be coded as a string with characters representing the events and ordered by their timestamps, such as Figure 2. In this case, A represents an analysis event in the Energy3D CAD tool, U represents an event of changing the U-value of a wall, C represents an event of changing the date for the energy simulation, a questionmark (?) represents an event of requesting help from the software, an underscore (_) represents an inactive time period longer than a certain threshold, and * is a wildcard that represents any other event "silenced" in this expression in order to reduce the dimensionality of the problem. For those who know a bit about bioinformatics, this resembles a DNA sequence. In the context of Energy3D, we may also call it as the DNA of a design, if that helps your imagination.

Now that we have converted the sequence of events into a string, we can use all sorts of techniques that have been developed to analyze strings to analyze these events, including those developed in bioinformatics such as sequence alignment or those developed in natural language processing. In this article, I am going to show how the widely-supported regular expressions (regex) can be used as a technique to detect whether a certain type of event or a certain combination of events occurred or how many times it occurred. I feel that regex, in our case, may be more accurate than edit distances such as the Levenshtein distance in matching the pattern. For example, a single substitution of event may represent a very different process despite the short edit distance.

Fig. 3: A sequence that shows high usage of feedback
We know that, a fundamental skill of inquiry is to keep everything else fixed but change only one variable at a time and then test how the system's output depends on that variable. Through this process of inquiry, we learn the meaning of that variable, as explained by Bruce Alberts, former president of the National Academy of Sciences and former Editor-in-Chief of the Science Magazine. In the example discussed here, that variable is the U-value of a selected wall of the house and the test is the simulation-based analysis. A pattern that has alternating U and A characters in the event string suggests a high probability of inquiry, which can be captured using a simple regex such as (U[_\\*\\?]*A)+. Between U and A, however, there may be other types of events that may or may not exist to weaken the probability or compromise the rigor. For example, changing the color of the wall between U and A may also result in an additional difference in energy use of the house that originates from the absorption of solar radiation by the external surface of the wall and has nothing to do with its U-value. In this case, changing multiple variables at a time appears to be a violation of the aforementioned inquiry principle that should be called out by the agent using another regex to analyze the substring between U and A.

An interesting feature in Energy3D is that feedback itself is also logged. Figure 3 shows a sequence that has an alternation pattern similar to that of Figure 2, but it records a type of behavior showing that the user may rely overly on feedback from the system to learn (the questionmarks in the string stand for feedback requests made by the user) and avoid deep thinking on their own. This may be a common problem in many intelligent tutors (sometimes this behavior is called "gaming the system").

The development of data mining and intelligent agents in Energy3D is opening interesting opportunities of research that will only grow more important in the era of artificial intelligence (AI). We are excited to be part of this wave of AI innovation.

General Motors funds engineering education based on Energy3D

Designing a parking lot solar canopy at Detroit Airport
General Motors (GM), along with other RE100 companies, has committed to powering its worldwide factories and offices with 100% renewable energy by 2050. Last month, the company furthered its commitment by giving the Engineering Computation Team at the Concord Consortium a $200,000 grant to promote engineering education using renewable energy as a learning context and artificial intelligence as a teaching assistant.

Modeling GM's rooftop solar arrays in Baltimore, MD
Modeling GM's solar arrays in Warren, MI
The project will use our signature Energy3D software, which is a one-stop-shop CAD tool for designing and simulating all kinds of solar power systems including photovoltaic (PV) and concentrated solar power (CSP), both of which have reached a very competitive cost of merely 5¢ per kWh or below in the world market. A unique feature of Energy3D is its ability to collect and analyze "atomically" fine-grained process data while users are designing with it. This capability makes it possible for us to develop machine learning algorithms to understand users' design behaviors, based on which we can develop intelligent agents to help users design better products and even unleash their creativity.

The generous grant from GM will allow us to bring this incredible engineering learning tool and the curriculum materials it supports to more science teachers across New England. It will also help extend our fruitful collaboration with the Virtual High School (VHS) to convert our Solarize Your World curriculum into an online course for sustainable engineering. VHS currently offers more than 200 titles to over 600 member schools. Through their large network, we hope to inspire and support more students and teachers to join the crucial mission that GM and other RE100 companies are already undertaking.

By supporting today's students to learn critical engineering design skills needed to meet the energy and environmental challenges, GM is setting an example of preparing tomorrow's workforce to realize its renewable energy vision.

High Frequency Electronics and Thermtest feature Energy2D

Credit: High Frequency Electronics
High Frequency Electronics is a magazine for engineers. In the cover article titled "Substrate Selection Can Simplify Thermal Management" in its November 2017 issue, author John Ranieri included our Energy2D software as one of the modeling tools recommended to the reader, alongside with mainstream commercial products from industry leaders such as Mentor Graphics and ANSYS. The software is also featured by Thermtest, a UK-based company that focuses on thermophysical instruments. Thermtest supplements the software with a database of standard materials, making it easier for engineers to use.

An Energy2D model of a heat source and a heat sink
According to the article, "heat haunts many RF/microwave and power electronics circuits and can limit performance and reliability. The heat generated by a circuit is a function of many factors, including input power, active device efficiencies, and losses through passive devices and transmission lines. It is often not practical to disperse heat from a circuit by convection fan-driven cooling, and heat must be removed from sensitive components and devices, by creating a thermal path to a metal enclosure or heat sink with good thermal conductivity." As a thermal simulation tool, Energy2D can certainly be very useful in helping engineers conceptualize and design such thermal paths.

More importantly, Energy2D can make your engineering experience as fun as playing a sandbox game! As one of our users recently wrote, "I am working as consulting engineer and we often have to make quick estimations where a steady-state node model is too simplified and setting up a complex FEM model is overkill. Energy2D is a very handy tool for something [like] that and I like the click'n'play sandbox feeling in combination with the physical correctness. I never thought FEM could be that fun."

Energy3D allows users to select brand name solar panels

Fig. 1: 20 brand name solar panels in Energy3D
Fig. 2: The daily outputs of 20 types of solar panels
Previous versions of Energy3D were based on a generic model of solar panel, which users can set its properties such as solar cell type, peak efficiency, panel dimension, color, nominal operating cell temperature, temperature coefficient of power, and so on. While it is essential for users to be able to adjust these parameters and learn what they represent and how they affect the output, it is sometimes inconvenient for a designer to manually set the properties of a solar panel to those of a brand name.

Fig. 3: The Micky Mouse solar farm
From Version 7.4.4, I started to add support of brand name solar panels to Energy3D. Twenty brand names were initially added to this version (Figure 1). These models are: ASP-400M (Advanced Solar Photonics), CS6X-330M-FG (Canadian Solar), CS6X-330P-FG (Canadian Solar), FS-4122-3 (First Solar), HiS-M280MI (Hyundai), HiS-S360RI (Hyundai), JAM6(K)-60-300/PR (JA Solar), JKM300M-60 (Jinko), LG300N1C-B3 (LG), LG350Q1K-A5 (LG), PV-UJ235GA6 (Mitsubishi), Q.PRO-G4 265 (Q-cells), SPR-E20-435-COM (SunPower), SPR-P17-350-COM (SunPower), SPR-X21-335-BLK (SunPower), SPR-X21-345 (SunPower), TSM-325PEG14(II) (Trina Solar), TSM-365DD14A(II) (Trina Solar), VBHN330SA16 (Panasonic), and YL305P-35b (Yingli). Figure 2 shows a comparison of their daily outputs in Boston on June 22 when they are laid flat (i.e., with zero tilt angle). Not surprisingly, a smaller solar panel with a lower cell efficiency produces less electricity.

Note that these models are relatively new. There are hundreds of older and other types of solar panels that will take a long time to add. If your type is not currently supported, you can always fall back to defining it using the "Custom" option, which is the default model for a solar panel.

Adding these brand names helped me figure out that the solar panels deployed in the Micky Mouse Solar Farm in Orlando (Figure 3) are probably from First Solar -- only they make solar panels of such a relatively small size (1200 mm × 600 mm).

The 2017 Energy Innovation Forum

We are invited to present at the Energy Innovation Forum on October 18 organized by the University of Massachusetts Lowell and the Massachusetts Clean Energy Center. The event will connect about 30 companies in Massachusetts with funders, investors, university researchers, and industry leaders to stimulate innovations in energy technologies.

For those who cannot attend the event, I am sharing our two posters here. You can also take a look at the PowerPoint slides for the Infrared Street View Project and the Virtual Solar Grid Project (we will do both oral and poster presentations). Both projects focus on developing a unique crowdsourcing model that integrates STEM education and energy research. The projects provide examples of using citizen science to support and engage a large number of students to learn science and engineering and participate in large-scale energy research.

The Infrared Street View Project will support research and education in the field of energy efficiency whereas the Virtual Solar Grid Project will support research and education in the field of renewable energy (primarily solar energy at present). Both projects are based on cutting-edge technologies being developed in my lab.

Deciphering a solar array surprise with Energy3D

Fig. 1: An Energy3D model of the SAS solar farm
Fig. 2: Daily production data (Credit: Xan Gregg)
SAS, a software company based in Cary, NC, is powered by a solar farm consisting of solar panel arrays driven by horizontal single-axis trackers (HSAT) with the axis fixed in the north-south direction and the panels rotating from east to west to follow the sun during the day. Figure 1 shows an Energy3D model of the solar farm. Xan Gregg, JMP Director of Research and Development at SAS, posted some production data from the solar farm that seem so counter-intuitive that he called it a "solar array surprise" (which happens to also acronym to SAS, by the way).

The data are surprising because they show that the outputs of solar panels driven by HSAT actually dip a bit at noon when the intensity of solar radiation reaches the highest of the day, as shown in Figure 2. The dip is much more pronounced in the winter than in the summer, according to Mr. Gregg (he only posted the data for April, though, which shows a mostly flat top with a small dip in the production curve).

Fig. 3: Energy3D results for four seasons.
Anyone can easily confirm this effect with an Energy3D simulation. Figure 3 shows the results predicted by Energy3D for 1/22, 4/22, 7/22, and 10/22, which reveal a small dip in April, significant dips in January and October, and no dip at all in July. How do we make sense of these results?

Fig. 4: Change of incident sunbeam angle on 1/22 (HSAT).
One of the most important factors that affect the output of solar panels, regardless of whether or not they turn to follow the sun, is the angle of incidence of sunlight (the angle between the direction of the incident solar rays and the normal vector of the solar panel surface). The smaller this angle is, the more energy the solar panel receives (if everything else is the same). If we track the change of the angle of incidence over time for a solar panel rotated by HSAT on January 22, we can see that the angle is actually the smallest in early morning and gradually increases to the maximum at noon (Figure 4). This is opposite to the behavior of the change of the angle of incidence on a horizontally-fixed solar panel, which shows that the angle is the largest in early morning and gradually decreases to the minimum at noon (Figure 5). The behavior shown in Figure 5 is exactly the reason why we feel the solar radiation is the most intense at noon.

Fig. 5: Change of incident sunbeam angle on 1/22 (fixed)
If the incident angle of sunlight is the smallest at 7 am in the morning of January 22, as shown in Figure 4, why is the output of the solar panels at 7 am less than that at 9 am, as shown in Figure 3? This has to do with something called air mass, a convenient term used in solar engineering to represent the distance that sunlight has to travel through the Earth's atmosphere before it reaches a solar panel as a ratio relative to the distance when the sun is exactly vertically upwards (i.e. at the zenith). The larger the air mass is, the longer the distance sunlight has to travel and the more it is absorbed or scattered by air molecules. The air mass coefficient is approximately inversely proportional to the cosine of the zenith angle, meaning that it is largest when the sun just rises from the horizon and the smallest when the sun is at the zenith. Because of the effect of air mass, the energy received by a solar panel will not be the highest at dawn. The exact time of the output peak depends on how the contributions from the incidental angle and the air mass -- among other factors -- are, relatively to one another.

So we can conclude that it is largely the motion of the solar panels driven by HSAT that is responsible for this "surprise." The constraint of the north-south alignment of the solar panel arrays makes it more difficult for them to face the sun, which appears to be shining more from the south at noon in the winter.

If you want to experiment further, you can try to track the changes of the incident angle in different seasons. You should find that the change of angle from morning to noon will not change as much as the day moves to the summer.

This dip effect becomes less and less significant if we move closer and closer to the equator. You can confirm that the effect vanishes in Singapore, which has a latitude of one degree. The lesson learned from this study is that the return of investment in HSAT is better at lower latitudes than at higher latitudes. This is probably why we see solar panel arrays in the north are typically fixed and tilted to face the south.

The analysis in this article should be applicable to parabolic troughs, which follow the sun in a similar way to HSAT.

Canadian researchers use Energy3D to design renewable energy systems for mobile hospitals in Libya

Fig. 1: A H-shaped mobile hospital designed using Energy3D
Prof. Tariq Iqbal and his student Emadeddin Hussein from the Department of Electrical and Computer Engineering at the Memorial University of Newfoundland in Canada published a paper in the Journal of Clean Energy Technologies titled with "Design of Renewable Energy System for a Mobile Hospital in Libya."

The researchers recognized that the United Nations' efforts to provide field hospitals have recently decreased in areas that face a high risk in transportation, lack of power, and lack of security for field officers, such as war-torn countries like Libya and Syria. In those unfortunate parts of the world, lack of aids and health resources have a major effect on people's lives. Their paper proposes a photovoltaics (PV) hybrid system for supplying an electric load of a mobile hospital in an area where there is no grid. Such a hybrid system is believed to be a cost-effective solution to power a mobile hospital capable of providing uninterrupted power to support a doctor and two nurses.

Our Energy3D software was used in their research as a simulation tool to study the heat load and optimize the design solution. Figure 1 shows a H-shaped design from their paper (I guess the H-shape was chosen because it is the initial of the word "hospital").

Fig. 2: Energy3D supports 450 regions from 117 countries.
We highly appreciate the researchers' efforts in finding ways to help people living in remote areas and war zones in the world. We are glad to learn that our software may have helped a bit in providing humanitarian aids to those people. Inspired by their work, we will add more weather data to Energy3D to cover areas in the state of unrest (455 regions from 120 countries are currently supported in Energy3D, as shown in Figure 2). In the future, we will also develop curriculum materials and design challenges to engage students all over the world to join these humanitarian efforts through our global drive and outreach.