Author Archives: Charles Xie

Using Artificial Intelligence to Design a Solar Farm

Everyone loves to maximize the return of investment (ROI). If you can effortlessly find a solution that pays a higher profit -- even only a few dollars more handsomely, why not? The problem is that, in many complicated engineering cases in the real world, such as designing a solar farm, we often don't know exactly what the optimal solutions are. We may know how to get some good solutions based on what textbooks or experts say, but no one in the world can be 100% sure that there aren't any better ones waiting to be discovered beyond the solution space that we have explored. As humans, we can easily get complacent and settled with the solutions that we feel good about, leaving the job (and the reward) of finding better solutions to another time or someone else.

Artificial intelligence (AI) is about to change all that. As design is essentially an evolution of solutions, AI techniques such as genetic algorithms (GA) are an excellent fit to the nature of many design problems and can generate a rich variety of competitive designs in the same way genetics does for biology (no two leaves are the same but they both work). These powerful tools have the potential to help people learn, design, and discover new things. In this article, I demonstrate how GA can be used to design a photovoltaic (PV) solar farm. As always, I first provide a short screencast video in which I used the daily output or profit as the objective function to speed up the animation so that you can see the evolution driven by GA. The actual assessments are based on using the annual output or profit as the objective function, presented in the text that follows the video. Note that the design process is still geared towards a single objective (i.e., the total output in kWh or the total profit in dollars over a given period of time). Design problems with multiple objectives will be covered later.


In GA, the solution depends largely on the choice of the objective function (or the fitness function), which specifies the main goal. For example, if the main goal is to generate as much electricity as possible on a given piece of land without the concern of the cost of solar panels, a design in which solar panels are closely packed may be a good choice. On the other hand, if the main goal is to generate as much electricity as possible from each solar panel because of their high price, a design in which rows of solar panels are far away from one another would be a good choice (in the case shown in the video, a single rack of solar panels was unsurprisingly found as the best solution). The real-world problems always lie between these two extremes, which is why they must be solved using the principles of engineering design. The video above clearly illustrates the design evolution driven by GA in the three cases (the two extremes and an intermediate).

Figure 1. An Energy3D model of an existing solar farm in Massachusetts.
To test the usefulness of the GA implementation in Energy3D for solving real-world problems, I picked an existing solar farm in Massachusetts (Figure 1) to see if GA could find better solutions. A 3D model of the solar farm had been created in the Virtual Solar Grid based on the information shown on Google Maps and its annual output calculated using Energy3D. Because I couldn't be exactly sure about the tilt angle, I also tweaked it a bit manually and ensured that an optimal tilt angle for the array be chosen (I found it to be around 32° in this case). The existing solar farm has 4,542 solar panels, capable of generating 2,255 MWh of electricity each year, based on the analysis result of Energy3D. [I must declare here that the selection of this site was purely for the purpose of scientific research and any opinion expressed as a result of this research should be viewed as exploratory and not be considered as any kind of evaluation of the existing solar farm and its designer(s). There might be other factors beyond my comprehension that caused a designer to choose a particular trade-off. The purpose of this article is to show that, if we know all the factors needed to be considered in such a design task, we can use AI to augment our intelligence, patience, and diligence.]

Figure 2. The results of 10 iterations.
Energy3D has a tool that allows the user to draw a polygon within which the solar farm should be designed. This polygon is marked by white lines. Using this tool, we can ensure that our solutions will always be confined to the specified area. I used this tool to set the boundary of the solar farm under design. This took care of an important spatial constraint and guaranteed that GA would always generate solutions on approximately the same land parcel as is situated by the existing solar farm.

For the objective function, we can select the total annual output, the average annual output of a solar panel, or the annual profit. I chose the annual profit and assumed that the generated electricity would sell for 22.5 cents per kWh (the 2018 average retail price in Massachusetts) and the daily cost of a solar panel (summing up the cost of maintenance, financing, etc.) would be 20 cents. I don't know how accurate these ROI numbers are. But let's just go with them for now. The annual profit is the total sale income minus the total operational cost. Qualitatively, we know that a higher electricity price and a lower operational cost would both favor using more solar panels and a lower electricity price and a higher operational cost would both favor using less solar panels. Finding the sweet spots in the middle requires quantitative analyses and comparisons of many different cases, which can be outsourced to AI.

Figure 3: The best design from 2,000 solutions
Figure 4: The second best design from 2,000 solutions.
In Energy3D, GA always starts with the current design as part of the first generation (so if you already have a good design, it will converge quickly). In order for GA not to inherit anything from the existing solar farm, I created an initial model that had only a rack with a few solar panels on it and a zero tilt angle. The size of the population was set to be 20. So at the beginning, this initial model would compete with 19 randomly generated solutions and was almost guaranteed to lose the chance to enter the next generation. In order to stop and check the results, I let GA run for only 10 generations. For convenience, let's call every 10 generations of GA evolution an iteration. Figure 2 shows that GA generated solutions below the supposed human performance in the first two iterations but quickly surpassed it after that. The solution kept improving but got stuck in iterations 5-7 and then it advanced again and stagnated again in iterations 8-10. This process could continue indefinitely, but I decided to terminate it after 10 iterations, or 100 generations. By this time, the software had generated and evaluated 2,000 solutions, which took a few hours as it had to run 2,000 annual simulations for thousands of solar panels.

The best solution (Figure 3) that emerged from these 2,000 generated solutions used 5,420 solar panels fixed at a tilt angle of 28.3° to generate 2,667 MWh per year and was about 16% better than the existing one based on the ROI model described above. The second best solution (Figure 4) used 4,670 solar panels fixed at a tilt angle of 38.6° to generate 2,340 MWh per year and was about 5.5% better than the existing one based on the ROI model. Note that if we use the average annual output per solar panel as the criterion, the second best solution would actually be better than the best one, but we know that the average panel output is not a good choice for the fitness function as it can result in an optimal solution with very few solar panels.

In conclusion, the generative design tools in Energy3D powered by AI can be used to search a large volume of the solution space and find a number of different solutions for the designer to pick and choose. The ability of AI to transcend human limitations in complex design is a significant application of AI and cannot be more exciting! We predict that future work will rely more and more on this power and today's students should be ready for the big time.

Using Artificial Intelligence to Design Energy-Efficient Buildings

The National Science Foundation issued a statement on May 10, 2018 in which the agency envisions that "The effects of AI will be profound. To stay competitive, all companies will, to some extent, have to become AI companies. We are striving to create AI that works for them, and for all Americans." This is probably the strongest message and the clearest matching order from a top science agency in the world about a particular area of research thus far. The application of AI to the field of design, and more broadly, creativity, is considered by many as the moonshot of the ongoing AI revolution, which is why I have chosen to dedicate a considerable portion of my time and effort to this strategically important area.

I have added two more application categories of using genetic algorithms (GAs) to assist engineering design in Energy3D, the main platform based on which I am striving to create a "designerly brain." One example is to find the optimal position to add a new building with glass curtain walls to an open space in an existing urban block so that the new building would use the least amount of energy. The other example is to find the optimal sizes of the windows on different sides of a building so that the building would use the least amount of energy. To give you a quick idea about how GAs work in these cases, I recorded the following two screencast videos from Energy3D. To speed up the search processes visualized in the videos, I chose the daily energy use as the objective function and only optimized for the winter condition. The solutions optimized for the annual energy use are shown later in this article.



Figure 1: A location of the building recommended by GA if it is in Boston.
Figure 2: A location of the building recommended by GA if it is in Phoenix.
For the first example, the energy use of a building in an urban block depends on how much solar energy it receives. In the winter, solar energy is good for the building as it warms up the building and saves the heating energy. In the summer, excessive heating caused by solar energy must be removed through air conditioning, increasing the energy use. The exact amount of energy use per year depends on a lot of other factors such as the fenestration of the building, its insulation, and its size. In this demo, we only focus on searching a good location for a building with everything else fixed. I chose a population with 32 individuals and let GA run for only five generations. Figures 1 and 2 show the final solutions for Boston (a heating-dominant area) and Phoenix (a cooling-dominant area), respectively. Not surprisingly, the GA results suggest that the new building be placed in a location that has more solar access for the Boston case and in location that has less solar access for the Phoenix case.

Figure 3: Window sizes of a building recommended by GA for Chicago.
Figure 4: Window sizes of a building recommended by GA for Phoenix.
For the second example, the energy use of a building depends on how much solar energy it receives through the windows and how much thermal energy transfers through the windows (since windows typically have less thermal resistance than walls). In the winter, while a larger window allows more solar energy to shine into the building and warm it up during the day, it also allows more thermal energy to escape through the larger area, especially at night. In the summer, both solar radiation and heat transfer through a larger window will contribute to the increase of the energy needed to cool the building. And this complicated relationship changes when the solution is designed for a different climate. Figures 3 and 4 show the final solutions for Chicago and Phoenix as suggested by the GA results, respectively. Note that not all GA results are acceptable solutions, but they can play advisory roles during a design process, especially for novice designers who do not have anyone to consult with.

In conclusion, artificial intelligence such as GA provides automated procedures that can help designers find optimal solutions more efficiently and thereby free them up from tedious, repetitive tasks if an exhaustive search of the solution space is necessary. Energy3D provides an accessible platform that integrates design, visualization, and simulation seamlessly to demonstrate these potential and capabilities. Our next step is to figure out how to translate this power into instructional intelligence that can help students and designers develop their abilities of creative thinking.

Virtual Solar Grid adds Crescent Dunes Solar Tower

The Crescent Dues Solar Tower as modeled in Energy3D
A light field visualization in Energy3D
A top view
The Crescent Dunes Solar Power Tower is a 110 MW utility-scale concentrated solar power (CSP) plant with 1.1 GWh of molten salt energy storage, located about 190 miles northwest of Las Vegas in the United States (watch a video about it). The plant includes a whopping number of 10,347 large heliostats that collect and focus sunlight onto a central receiver at the top of a 195-meter tall tower to heat 32,000 tons of molten salt. The molten salt circulates from the tower to some storage tanks, where it is then used to produce steam and generate electricity. Excess thermal energy is stored in the molten salt and can be used to generate power for up to ten hours, providing electricity in the evening or during cloudy hours. Unlike other CSP plants, Crescent Dunes' advanced storage technology eliminates the need for any backup fossil fuels to melt the salt and jumpstart the plant in the morning. Each heliostat is made up of 35 6×6 feet (1.8 m) mirror facets, adding up to a total aperture of 115.7 square meters. The total solar field aperture sums to an area of 1,196,778 square meters, or more than one square kilometer, in a land area of 1,670 acres (6.8 square kilometers). That is, the plant is capable of potentially collecting one seventh of all the solar energy that shines onto the field. Costing about $1 billion to construct, it was commissioned in September 2015.

A close-up view of accurate modeling of heliostat tracking
Since its inception in January 2018, our Virtual Solar Grid has included the Energy3D models of nearly all the existing large CSP power plants in the world. That covers more than 80 large CSP plants capable of generating more than 11 TWh per year. The ultimate goal of the Virtual Solar Grid is to mirror every solar energy system in the world in the computing cloud through crowdsourcing involving a large number of students interested in engineering, creating an unprecedentedly detailed computational model for learning how to design a reliable and resilient power grid based completely on renewable energy (solar energy in this phase). The modeling of the Crescent Dunes plant has put our Energy3D software to a stress test. Can it handle such a complex project with so many heliostats in such a large field?
A side view

Near the base of the tower
Over the shoulder of the tower
The solar field
This became my President's Day project. To make this happen, I had to first increase the resolution of Google Maps images supported in Energy3D. A free developer account of Google Maps can only get images of 640 × 640 pixels. When you are looking at an area that is as big as a few square kilometers, that resolution gets you very blurry images. To fetch high-resolution images from Google without paying them, I had to basically make Energy3D download many more images and then knit them together to create a large image that forms an Earth canvas in Energy3D (hence you see a lot of Google logos and copyrights in the ground image that I could not get rid of from each patch). Once I had the Earth canvas, I then drew heliostats on top of it (that is, one by one for more than 10,000 times!) and compared their orientations and shadows rendered by Energy3D with those shown in the Google Maps images. Now, the problem is that Google doesn't tell you when the satellite image was taken. But based on the shadows of the tower and other structures, I could easily figure out an approximate time and date. I then set that time and date in Energy3D and confirmed that the shadow of the tower in the Energy3D model overlaps with that in the satellite image. After this calibration, every single virtual heliostat that I copied and pasted then automatically aligned with those in the satellite image (as long as the original copy specifies the tower that it points to), visually testifying that the tracking algorithm for the virtual heliostats in Energy3D is just as good as the one used by the computers that control the motions of the real-world heliostats. Matching the computer model with the satellite image is essential as the procedure ensures the accuracy of our numerical simulation.

The solar field
After making numerous other improvements for Energy3D, the latest version (V7.8.4) was finally capable of modeling this colossal power plant. This includes the capability of being able to divide the whole project into nine smaller projects and then allow Energy3D to stitch the smaller 3D models together to create the full model using the Import Tool. This divide-and-conquer method makes the user interface a lot faster as neither you nor Energy3D need to deal with 9,000 existing heliostats while you are adding the last 1,000. The predicted annual output of the plant by Energy3D is 462 GWh, as opposed to the official projection of 500 GWh, assuming 90% of mirror reflectance and 25% of thermal-to-electric conversion.

One thing I had to do, though, was to double the memory requirement for the software from the default 256 MB to 512 MB for the Windows version (the Mac version is fine), which would make the software fail on really old computers that have only 256 MB of total memory (but I don't think such old computers would still work properly today anyways). The implication of this change is that, if you are a Windows user and have installed Energy3D before, you will need to re-install it using the latest installer from our website in order to take advantage of this update. If you are not sure, there is a way to know how much memory your Energy3D is allocated by checking the System Information and Preferences under the File Menu. If that number is about 250 MB, then you have to re-install the software -- if you really want to see the spectacular Crescent Dunes model in Energy3D without crashing it.

With basically only the three Ivanpah Solar Towers left to be modeled and uploaded, the Virtual Solar Grid has nearly incorporated all the operational solar thermal power plants in the world. We will continue to add new CSP plants as they come online and show up in Google Maps. In our next phase, we will move to add more photovoltaic (PV) solar power plants to the Virtual Solar Grid. At this point, the proportion of the modeled capacity from PV stands at only 8% in the Virtual Solar Grid, compared with 92% from CSP. Adding PV power plants will really require crowdsourcing as there are many more PV projects in the world -- there are potentially millions of small rooftop systems in existence. On a separate avenue, the National Renewable Energy Laboratory (NREL) has estimated that, if we add solar panels to every square feet of usable roof area in the U.S., we could meet 40% of our total electricity need. Is their statement realistic? Perhaps only time can tell, but by adding more and more virtual solar power systems to the Virtual Solar Grid, we might be able to tell sooner.

Virtual Solar Grid comes online

Fig. 1: Modeled output of the Virtual Solar Grid
Fig. 2: A residential rooftop PV system.
If you care about finding renewable energy solutions to environmental problems, you probably would like to join an international community of Energy3D users to model existing or design new solar power systems in the real world and contribute them to the Virtual Solar Grid — a hypothetical power grid that I am developing from scratch to model and simulate interconnected solar energy systems and storage. My ultimate goal is to crowdsource an unprecedented fine-grained, time-dependent, and multi-scale computational model for anyone, believer or skeptic of renewables, to study how much of humanity's energy need can be met by solar power generation on the global scale — independent of any authority and in the spirit of citizen science. I have blogged about this ambitious plan before and I am finally pleased to announce that an alpha version of the Virtual Solar Grid has come online, of course, with a very humble beginning.

Fig. 3: The Micky Mouse solar farm in Orlando, FL.
Fig. 4: NOOR-1 parabolic troughs in Morocco.
As of the end of January, 2018, the Virtual Solar Grid has included 3D models of only a bit more than 100 solar energy systems, ranging from small rooftop photovoltaic solar panel arrays (10 kW) to large utility-scale concentrated solar power plants (100 MW) in multiple continents. At present, the Virtual Solar Grid has a lot of small systems in Massachusetts because we are working with many schools in the state.

With this initial capacity, the Virtual Solar Grid is capable of generating roughly 4 TWh per year, approximately 0.02% of all the electricity consumed by the entire world population in 2016 (a little more than 2 PWh). Although 0.02% is too minuscule to count, it nonetheless marks the starting point of our journey towards an important goal of engaging and supporting anyone to explore the solar energy potential of our planet with serious engineering design. In a sense, you can think of this work as inventing a "Power Minecraft" that would entice people to participate in a virtual quest for switching humanity's power supply to 100% renewable energy.

Fig. 5: Khi Solar One solar power tower in South Africa.
Fig. 6: PS 10 and PS 20 in Spain.
The critical infrastructure underlying the Virtual Solar Grid is our free, versatile Energy3D software that allows anyone from a middle school student to a graduate school student to model or design any photovoltaic or concentrated solar power systems, down to the exact location and specs of individual solar panels or heliostats. Performance analysis of solar power systems in Energy3D is based on a growing database of solar panel brand models and weather data sets for nearly 700 regions in every habitable continent. To construct a grid, micro or global, an Energy3D model can be geotagged — the geolocation is automatically set when you import a Google Maps image into an Energy3D model. Such a virtual model, when uploaded to the Virtual Solar Grid, will be deployed to a Google Maps application that shows exactly where it is in the world and how much electricity it produces at a given hour on a given day under average weather conditions. This information will be used to investigate how solar power and other renewables, with thermal and electric storage, can be used to provide base loads and meet peak demands for a power grid of an arbitrary size, so to speak.

Finally, it is important to note that the Virtual Solar Grid project is generously funded by the U.S. National Science Foundation through grant number #1721054. Their continuous support of my work is deeply appreciated.

Energy2D used as a simulation tool in astrobiology research

Fig. 1: Frasassi Caves, Italy (credit: Astrobiology)
Deposition of minerals in caves may be affected by microbes. Geochemical analysis of these minerals can reveal biosignatures of subsurface life on a planet such as the Mars. Research in this area can help NASA build subsurface life probes for future planetary missions.

Fig. 2: Energy2D simulations (credit: Astrobiology)
Astrobiology, a peer-reviewed scientific journal covering research on the origin, evolution, distribution and future of life across the universe, just published a research paper titled "Transport-Induced Spatial Patterns of Sulfur Isotopes (δ34S) as Biosignatures" by a group of researchers at Pennsylvania State University, the University of Texas at El Paso, and Rice University. The lead author is Dr. Muammar Mansor. The researchers analyzed sample sites in the Frasassi Caves, Italy (Figure 1) and used Energy2D to simulate the effects of convection and diffusion on the chemical deposition processes (Figure 2). According to the paper, the results of the deposition simulated using Energy2D are consistent with the data collected from the cave sites, suggesting the importance of the effect of natural convection.

This is the second paper that uses Energy2D in astrobiology research (and the 16th published paper that used Energy2D in scientific research to simulate a natural or man-made system). In the first paper, Energy2D was used to simulate the thermal conditions for the origin of life. Once again, the publication of this paper provides fresh evidence for the broader impacts of our work.

Energy3D uses intelligent agents to create adaptive feedback based on analyzing the "DNA of design"

Fig. 1: A simple case of teaching thermal insulation.
Energy3D is a "smart" CAD tool because it can monitor the designer's behavior in real time, based on which it can generate feedback to the designer to regulate the design behavior. This capacity has tremendous implications to learning and teaching scientific inquiry and engineering design with open-ended nature that requires, ideally, one-to-one tutoring so intense that no teacher can easily provide in real classrooms.

The computational mechanism for generating feedback in Energy3D is based on intelligent agents, which consist of sensors and actuators (in very generic terms). In Energy3D, all the events are logged behind the scenes. The events provide the raw data stream from which various sensors produce signals based on subsets of the raw data. For instance, a sensor can be created to monitor any event related to solar panels of a house. An agent then uses a decision tree model to determine which actuators should be called to provide feedback to the user or direct Energy3D to change its state. For instance, if a solar panel is detected to be placed on the north-facing roof, the agent can remind the designer to rethink about the decision. Just like what a teacher may do, the agent can even suggest a comparative analysis between a solar panel on the north-facing roof and a solar panel on the south-facing or west-facing roof. Although this type of inquiry and design can be also taught using directly scaffolded instruction that guides students to explore step by step, in practice we have found the effect of this approach often diminishes because many students do not read instruction carefully enough and remember them long enough. It is also challenging for teachers to guide the whole class through this kind of long learning process as students often pace differently. Adaptive feedback provides a way to help students only when they need or just when a need is detected, thus providing a better chance to deliver effective instruction.

Let's look at a very simple example. Figure 1 shows a learning activity, the goal of which is to teach how the thermal property of a wall, called the U-value, affects the energy use of a house. Many students may walk away with a shallow understanding that the higher the U-value is, the more energy a house uses. The challenge is to help them deepen their understanding. For example, how can we make sure that students will collect enough data points to discover that the energy a house uses is proportional to the U-value? How can we support them to find out that the relationship is independent of seasonal change, wall orientation, and solar radiation (e.g., a lower U-value is good in both summer and winter, irrespective of whether or not the wall faces the sun). Helping students accomplish this level of understanding through inquiry-based activities is by no means a trivial task, even in this seemingly simple example. Let's explore what we may do in Energy3D now that we have a way to monitor students' interactions with it.

Fig. 2: An event sequence coded like a DNA sequence.
In nearly all software that support learning and teaching, the events during a process can be coded as a string with characters representing the events and ordered by their timestamps, such as Figure 2. In this case, A represents an analysis event in the Energy3D CAD tool, U represents an event of changing the U-value of a wall, C represents an event of changing the date for the energy simulation, a questionmark (?) represents an event of requesting help from the software, an underscore (_) represents an inactive time period longer than a certain threshold, and * is a wildcard that represents any other event "silenced" in this expression in order to reduce the dimensionality of the problem. For those who know a bit about bioinformatics, this resembles a DNA sequence. In the context of Energy3D, we may also call it as the DNA of a design, if that helps your imagination.

Now that we have converted the sequence of events into a string, we can use all sorts of techniques that have been developed to analyze strings to analyze these events, including those developed in bioinformatics such as sequence alignment or those developed in natural language processing. In this article, I am going to show how the widely-supported regular expressions (regex) can be used as a technique to detect whether a certain type of event or a certain combination of events occurred or how many times it occurred. I feel that regex, in our case, may be more accurate than edit distances such as the Levenshtein distance in matching the pattern. For example, a single substitution of event may represent a very different process despite the short edit distance.

Fig. 3: A sequence that shows high usage of feedback
We know that, a fundamental skill of inquiry is to keep everything else fixed but change only one variable at a time and then test how the system's output depends on that variable. Through this process of inquiry, we learn the meaning of that variable, as explained by Bruce Alberts, former president of the National Academy of Sciences and former Editor-in-Chief of the Science Magazine. In the example discussed here, that variable is the U-value of a selected wall of the house and the test is the simulation-based analysis. A pattern that has alternating U and A characters in the event string suggests a high probability of inquiry, which can be captured using a simple regex such as (U[_\\*\\?]*A)+. Between U and A, however, there may be other types of events that may or may not exist to weaken the probability or compromise the rigor. For example, changing the color of the wall between U and A may also result in an additional difference in energy use of the house that originates from the absorption of solar radiation by the external surface of the wall and has nothing to do with its U-value. In this case, changing multiple variables at a time appears to be a violation of the aforementioned inquiry principle that should be called out by the agent using another regex to analyze the substring between U and A.

An interesting feature in Energy3D is that feedback itself is also logged. Figure 3 shows a sequence that has an alternation pattern similar to that of Figure 2, but it records a type of behavior showing that the user may rely overly on feedback from the system to learn (the questionmarks in the string stand for feedback requests made by the user) and avoid deep thinking on their own. This may be a common problem in many intelligent tutors (sometimes this behavior is called "gaming the system").

The development of data mining and intelligent agents in Energy3D is opening interesting opportunities of research that will only grow more important in the era of artificial intelligence (AI). We are excited to be part of this wave of AI innovation.

General Motors funds engineering education based on Energy3D

Designing a parking lot solar canopy at Detroit Airport
General Motors (GM), along with other RE100 companies, has committed to powering its worldwide factories and offices with 100% renewable energy by 2050. Last month, the company furthered its commitment by giving the Engineering Computation Team at the Concord Consortium a $200,000 grant to promote engineering education using renewable energy as a learning context and artificial intelligence as a teaching assistant.

Modeling GM's rooftop solar arrays in Baltimore, MD
Modeling GM's solar arrays in Warren, MI
The project will use our signature Energy3D software, which is a one-stop-shop CAD tool for designing and simulating all kinds of solar power systems including photovoltaic (PV) and concentrated solar power (CSP), both of which have reached a very competitive cost of merely 5¢ per kWh or below in the world market. A unique feature of Energy3D is its ability to collect and analyze "atomically" fine-grained process data while users are designing with it. This capability makes it possible for us to develop machine learning algorithms to understand users' design behaviors, based on which we can develop intelligent agents to help users design better products and even unleash their creativity.

The generous grant from GM will allow us to bring this incredible engineering learning tool and the curriculum materials it supports to more science teachers across New England. It will also help extend our fruitful collaboration with the Virtual High School (VHS) to convert our Solarize Your World curriculum into an online course for sustainable engineering. VHS currently offers more than 200 titles to over 600 member schools. Through their large network, we hope to inspire and support more students and teachers to join the crucial mission that GM and other RE100 companies are already undertaking.

By supporting today's students to learn critical engineering design skills needed to meet the energy and environmental challenges, GM is setting an example of preparing tomorrow's workforce to realize its renewable energy vision.

High Frequency Electronics and Thermtest feature Energy2D

Credit: High Frequency Electronics
High Frequency Electronics is a magazine for engineers. In the cover article titled "Substrate Selection Can Simplify Thermal Management" in its November 2017 issue, author John Ranieri included our Energy2D software as one of the modeling tools recommended to the reader, alongside with mainstream commercial products from industry leaders such as Mentor Graphics and ANSYS. The software is also featured by Thermtest, a UK-based company that focuses on thermophysical instruments. Thermtest supplements the software with a database of standard materials, making it easier for engineers to use.

An Energy2D model of a heat source and a heat sink
According to the article, "heat haunts many RF/microwave and power electronics circuits and can limit performance and reliability. The heat generated by a circuit is a function of many factors, including input power, active device efficiencies, and losses through passive devices and transmission lines. It is often not practical to disperse heat from a circuit by convection fan-driven cooling, and heat must be removed from sensitive components and devices, by creating a thermal path to a metal enclosure or heat sink with good thermal conductivity." As a thermal simulation tool, Energy2D can certainly be very useful in helping engineers conceptualize and design such thermal paths.

More importantly, Energy2D can make your engineering experience as fun as playing a sandbox game! As one of our users recently wrote, "I am working as consulting engineer and we often have to make quick estimations where a steady-state node model is too simplified and setting up a complex FEM model is overkill. Energy2D is a very handy tool for something [like] that and I like the click'n'play sandbox feeling in combination with the physical correctness. I never thought FEM could be that fun."

Energy3D allows users to select brand name solar panels

Fig. 1: 20 brand name solar panels in Energy3D
Fig. 2: The daily outputs of 20 types of solar panels
Previous versions of Energy3D were based on a generic model of solar panel, which users can set its properties such as solar cell type, peak efficiency, panel dimension, color, nominal operating cell temperature, temperature coefficient of power, and so on. While it is essential for users to be able to adjust these parameters and learn what they represent and how they affect the output, it is sometimes inconvenient for a designer to manually set the properties of a solar panel to those of a brand name.

Fig. 3: The Micky Mouse solar farm
From Version 7.4.4, I started to add support of brand name solar panels to Energy3D. Twenty brand names were initially added to this version (Figure 1). These models are: ASP-400M (Advanced Solar Photonics), CS6X-330M-FG (Canadian Solar), CS6X-330P-FG (Canadian Solar), FS-4122-3 (First Solar), HiS-M280MI (Hyundai), HiS-S360RI (Hyundai), JAM6(K)-60-300/PR (JA Solar), JKM300M-60 (Jinko), LG300N1C-B3 (LG), LG350Q1K-A5 (LG), PV-UJ235GA6 (Mitsubishi), Q.PRO-G4 265 (Q-cells), SPR-E20-435-COM (SunPower), SPR-P17-350-COM (SunPower), SPR-X21-335-BLK (SunPower), SPR-X21-345 (SunPower), TSM-325PEG14(II) (Trina Solar), TSM-365DD14A(II) (Trina Solar), VBHN330SA16 (Panasonic), and YL305P-35b (Yingli). Figure 2 shows a comparison of their daily outputs in Boston on June 22 when they are laid flat (i.e., with zero tilt angle). Not surprisingly, a smaller solar panel with a lower cell efficiency produces less electricity.

Note that these models are relatively new. There are hundreds of older and other types of solar panels that will take a long time to add. If your type is not currently supported, you can always fall back to defining it using the "Custom" option, which is the default model for a solar panel.

Adding these brand names helped me figure out that the solar panels deployed in the Micky Mouse Solar Farm in Orlando (Figure 3) are probably from First Solar -- only they make solar panels of such a relatively small size (1200 mm × 600 mm).

The 2017 Energy Innovation Forum

We are invited to present at the Energy Innovation Forum on October 18 organized by the University of Massachusetts Lowell and the Massachusetts Clean Energy Center. The event will connect about 30 companies in Massachusetts with funders, investors, university researchers, and industry leaders to stimulate innovations in energy technologies.

For those who cannot attend the event, I am sharing our two posters here. You can also take a look at the PowerPoint slides for the Infrared Street View Project and the Virtual Solar Grid Project (we will do both oral and poster presentations). Both projects focus on developing a unique crowdsourcing model that integrates STEM education and energy research. The projects provide examples of using citizen science to support and engage a large number of students to learn science and engineering and participate in large-scale energy research.

The Infrared Street View Project will support research and education in the field of energy efficiency whereas the Virtual Solar Grid Project will support research and education in the field of renewable energy (primarily solar energy at present). Both projects are based on cutting-edge technologies being developed in my lab.