Tag Archives: Building simulation

Energy3D makes designing realistic buildings easy

The annual yield and cost benefit analyses of rooftop solar panels based on sound scientific and engineering principles are critical steps to the financial success of building solarization. Google's Project Sunroof provides a way for millions of property owners to get recommendations for the right solar solutions.



Another way to conduct accurate scientific analysis of solar panel outputs based on their layout on the rooftop is to use a computer-aided engineering (CAE) tool to do a three-dimensional, full-year analysis based on ab initio scientific simulation. Under the support of the National Science Foundation since 2010, we have been developing Energy3D, a piece of CAE software that has the goal of bringing the power of sophisticated scientific and engineering simulations to children and laypersons. To achieve this goal, a key step is to support users to rapidly sketch up their own buildings and the surrounding objects that may affect their solar potentials. We feel that most CAD tools out there are probably too difficult for average users to create realistic models of their own houses. This forces us to invent new solutions.

We have recently added countless new features to Energy3D to progress towards this goal. The latest version allows many common architectural styles found in most parts of the US to be created and their solar potential to be studied. The screenshots embedded in this article demonstrate this capability. With the current version, each of these designs took myself approximately an hour to create from scratch. But we will continue to push the limit.

The 3D construction user interface has been developed based on the tenet of supporting users to create any structure using a minimum set of building blocks and operations. Once users master a relatively small set of rules, they are empowered to create almost any shape of building as they wish.

Solar yield analysis of the first house
The actual time-consuming part is to get the right dimension and orientation of a real building and the surrounding tall objects such as trees.
Google's 3D map may provide a way to extract these data. Once the approximate geometry of a building is determined, users can easily put solar panels anywhere on the roof to check out their energy yield. They can then try as many different layouts as they wish to compare the yields and select an optimal layout. This is especially important for buildings that may have partial shades and sub-optimal orientations. CAE tools such as Energy3D can be used to do spatial and temporal analysis and report daily outputs of each panel in the array, allowing users to obtain fine-grained, detailed results and thus providing a good simulation of solar panels in day-to-day operation.

The engineering principles behind this solar design, assessment, and optimization process based on science is exactly what the Next Generation Science Standards require K-12 students in the US to learn and practice. So why not ask children for help to solarize their own homes, schools, and communities, at least virtually? The time for doing this can never be better. And we have paved the road for this vision by creating one of easiest 3D interfaces with compelling scientific visualizations that can potentially entice and engage a lot of students. It is time for us to test the idea.

To see more designs, visit this page.

Solarizing a house in Energy3D

Fig. 1 3D model of a real house near Boston (2,150 sq ft).
On August 3, 2015, President Obama announced the Clean Power Plan – a landmark step in reducing carbon pollution from power plants that takes real action on climate change. Producing clean energy from rooftop solar panels can greatly mitigate the problems in current power generation. In the US, there are more than 130 million homes. These homes, along with commercial buildings, consume more than 40% of the total energy of the country. With improving generation and storage technologies, a large portion of that usage could be generated by home buildings themselves.

A practical question is: How do we estimate the energy that a house can potentially generate if we put solar panels on top of it? This estimate is key to convincing homeowners to install solar panels or the bank to finance it. You wouldn't buy something without knowing its exact benefits, would you? This is why solar analysis and evaluation are so important to the solar energy industry.

The problem is: Every building is different! The location, the orientation, the landscape, the shape, the roof pitch, and so on, vary from one building to another. And there are over 100 MILLION of them around the country! To make the matter even more complicated, we are talking about annual gains, which require the solar analyst to consider solar radiation and landscape changes in four seasons. With all these complexities, no one can really design the layout of solar panels and calculate their outputs without using a 3D simulation tool.

There may be solar design and prediction software from companies like Autodesk. But for three reasons, we believe that our Energy3D CAD software will be a relevant tool in this marketplace. First, our goal is to enable everyone to use Energy3D without having to go through the level of training that most engineers must go through with other CAD tools in order to master them. Second, Energy3D is completely free of charge to everyone. Third, the accuracy of Energy3D's solar analysis is comparable with that of others (and is improving as we speak!).

With these advantages, it is now possible for homeowners to evaluate the solar potential of their houses INDEPENDENTLY, using an incredibly powerful scientific simulation tool that has been designed for the layperson.

In this post, I will walk you through the solar design process in Energy3D step by step.

1) Sketch up a 3D model of your house

Energy3D has an easy-to-use interface for quickly constructing your house in a 3D environment. With this interface, you can create an approximate 3D model of your house without having to worry about details such as interiors that are not important to solar analysis. Improvements of this user interface are on the way. For example, we just added a handy feature that allows users to copy and paste in 3D space. This new feature can be used to quickly create an array of solar panels by simply copying a panel and hitting Ctrl/Command+V a few times. As trees are important to the performance of your solar panels, you should also model the surrounding trees by adding various tree objects in Energy3D. Figure 1 shows a 3D model of a real house in Massachusetts, surrounded by trees. Notice that this house has a T shape and its longest side faces southeast, which means that other sides of its roof may worth checking.
Fig. 2 Daily solar radiation in four seasons

2) Examine the solar radiation on the roof in four seasons

Once you have a 3D model of your house and the surrounding trees, you should take a look at the solar radiation on the roof throughout the year. To do this, you have to change the date and run a solar simulation for each date. For example, Figure 2 shows the solar radiation heat maps of the Massachusetts house on 1/1, 4/1, 7/1, and 10/1, respectively. Note that the trees do not have leaves from the beginning of December to the end of April (approximately), meaning that their impacts to the performance of the solar panels are minimal in the winter.

The conventional wisdom is that the south-facing side of the roof is a good place to put solar panels. But very few houses face exact south. This is why we need a simulation tool to analyze real situations. By looking at the color maps in Figure 2, we can quickly figure out that the southeast-facing side of the roof of this house is the optimal side for solar panels and we also know that the lower part of this side is shadowed significantly by the surrounding trees.

Fig. 3 Solarizing the house
3) Add, copy, and paste solar panels to create arrays

Having decided which side to lay the solar panels, the next step is to add them to it. You can drop them one by one. Or drop the first one near an edge and then copy and paste it to easily create an array. Repeat this for three rows as illustrated in Figure 3. Note that I chose the solar panels that have a light-electricity conversion efficiency of 15%, which is about average in the current market. New panels may come with higher efficiency.

The three rows have a total number of 45 solar panels (3 x 5 feet each). From Figure 2, it also seems the T-wing roof leaning towards west may be a sub-optimal place to go solar. Let's also put a 2x5 array of panels on that side. If the simulation shows that they do not worth the money, we can just delete them from the model. This is the power of the simulation -- you do not have to pay a penny for anything you do with a virtual house (and you do not have to wait for a year to evaluate the effect of anything you do on its yearly energy usage).

4) Run annual energy analysis for the building

Fig. 4 Energy graphs with added solar panels
Now that we have put up the solar panels, we want to know how much energy they can produce. In Energy3D, this is as simple as selecting "Run Annual Energy Analysis for Building..." under the Analysis Menu. A graph will display the progress while Energy3D automatically performs a 12-month simulation and updates the results (Figure 4).

I recommend that you run this analysis every time you add a row of solar panels to keep track of the gains from each additional row. For example, Figure 4 shows the changes of solar outputs each time we add a row (the last one is the 10 panels added to the west-facing side of the T-wing roof). The following lists the annual results:
  • Row 1, 15 panels, output: 5,414 kWh --- 361 kWh/panel
  • Row 2, 15 panels, output: 5,018 kWh (total: 10,494 kWh) --- 335 kWh/panel
  • Row 3, 15 panels, output: 4,437 kWh (total: 14,931 kWh) --- 296 kWh/panel
  • T-wing 2x5 array, 10 panels, output: 2,805 kWh (total: 17,736 kWh) --- 281 kWh/panel
These results suggest that 30 panels in Rows 1 and 2 are probably a good solution for this house -- they generate a total of 10,494 kWh in a year. But if we have better (i.e., high efficiency) and cheaper solar panels in the future, adding panels to Row 3 and the T-wing may not be such a bad idea.

Fig. 5 Comparing solar panels at different positions
5) Compare the solar gains of panels at different positions

In addition to analyze the energy performance of the entire house, Energy3D also allows you to select individual elements and compare their performances. Figure 5 shows the comparison of four solar panels at different positions. The graph shows that the middle positions in Row 3 are not good spots for solar panels. Based on this information, we can go back to remove those solar panels and redo the analysis to see if we will have a better average output of Row 3.

After removing the five solar panels in the middle of Row 3, the total output drops to 16,335 kWh, meaning that the five panels on average output 280 kWh each.

6) Decide which positions are acceptable for installing solar panels

The analysis results thus far should provide you enough information with regard to whether it worth your money to solarize this house and, if yes, how to solarize it. The real decision depends on the cost of electricity in your area, your budget, and your expectation of the return of investment. With the price of solar panel continuing to drop, the quality continues to improve, and the pressure to reduce fossil energy usage continues to increase, building solarization is becoming more and more viable.

Solar analysis using computational tools is typically considered as the job of a professional engineer as it involves complicated computer-based design and analysis. The high cost of a professional engineer makes analyzing and evaluating millions of buildings economically unfavorable. But Energy3D reduces this task to something that even children can do. This could lead to a paradigm shift in the solar industry that will fundamentally change the way residential and commercial solar evaluation is conducted. We are very excited about this prospect and are eager to with the energy industry to ignite this revolution.

Daily energy analysis in Energy3D

Fig. 1: The analyzed house.
Energy3D already provides a set of powerful analysis tools that users can use to analyze the annual energy performance of their designs. For experts, the annual analysis tools are convenient as they can quickly evaluate their designs based on the results. For novices who are trying to understand how the energy graphs are calculated (or skeptics who are not sure whether they should trust the results), the annual analysis is sometimes a bit like a black box. This is because if there are too many variables (which, in this case, are seasonal changes of solar radiation and weather) to deal with at once, we will be overwhelmed. The total energy data are the results of two astronomic cycles: the daily cycle (caused by the spin of the Earth itself) and the annual cycle (caused by the rotation of the Earth around the Sun). This is why novices have a hard time reasoning with the results.

Fig. 2: Daily light sensor data in four seasons.
To help users reduce one layer of complexity and make sense of the energy data calculated in Energy3D simulations, a new class of daily analysis tools has been added to Energy3D. These tools allow users to pick a day to do the energy analyses, limiting the graphs to the daily cycle.

For example, we can place three sensors on the east, south, and west sides of the house shown in Figure 1. Then we can pick four days -- January 1st, April 1st, July 1st, and October 1st -- to represent the four seasons. Then we run a simulation for each day to collect the corresponding sensor data. The results are shown in Figure 2. These show that in the winter, the south-facing side receives the highest intensity of solar radiation, compared with the east and west-facing sides. In the summer, however, it is the east and west-facing sides that receive the highest intensity of solar radiation. In the spring and fall, the peak intensities of the three sides are comparable but they peak at different times.

Fig. 3: Daily energy use and production in four seasons.
If you take a more careful look at Figure 2, you will notice that, while the radiation intensity on the south-facing side always peaks at noon, those on the east and west-facing sides generally go through a seasonal shift. In the summer, the peak of radiation intensity occurs around 8 am on the east-facing side and around 4 pm on the west-facing side, respectively. In the winter, these peaks occur around 9 am and 2 pm, respectively. This difference is due to the shorter day in the winter and the lower position of the Sun in the sky.

Energy3D also provides a heliodon to visualize the solar path on any given day, which you can use to examine the angle of the sun and the length of the day. If you want to visually evaluate solar radiation on a site, it is best to combine the sensor and the heliodon.

You can also analyze the daily energy use and production. Figure 3 shows the results. Since this house has a lot of south-facing windows that have a Solar Heat Gain Coefficient of 80%, the solar energy is actually enough to keep the house warm (you may notice that your heater runs less frequently in the middle of a sunny winter day if you have a large south-facing window). But the downside is that it also requires a lot of energy to cool the house in the summer. Also note the interesting energy pattern for July 1st -- there are two smaller peaks of solar radiation in the morning and afternoon. Why? I will leave that answer to you.

Simulating geometric thermal bridges using Energy2D

Fig. 1: IR image of a wall junction (inside) by Stefan Mayer
One of the mysterious things that causes people to scratch their heads when they see an infrared picture of a room is that the junctions such as edges and corners formed by two exterior walls (or floors and roofs) often appear to be colder in the winter than other parts of the walls, as is shown in Figure 1. This is, I hear you saying, caused by an air gap between two walls. But not that simple! While a leaking gap can certainly do it, the effect is there even without a gap. Better insulation only makes the junctions less cold.

Fig. 2: An Energy2D simulation of thermal bridge corners.
A typical explanation of this phenomenon is that, because the exterior surface of a junction (where the heat is lost to the outside) is greater than its interior surface (where the heat is gained from the inside), the junction ends up losing thermal energy in the winter more quickly than a straight part of the walls, causing it to be colder. The temperature difference is immediately revealed by a very sensitive IR camera. Such a junction is commonly called a geometric thermal bridge, which is different from material thermal bridge that is caused by the presence of a more conductive piece in a building assembly such as a steel stud in a wall or a concrete floor of a balcony.

Fig. 3: IR image of a wall junction (outside) by Stefan Mayer
But the actual heat transfer process is much more complicated and confusing. While a wall junction does create a difference in the surface areas of the interior and exterior of the wall, it also forms a thicker area through which the heat must flow through (the area is thicker because it is in a diagonal direction). The increased thickness should impede the heat flow, right?

Fig. 4: An Energy2D simulation of a L-shaped wall.
Unclear about the outcome of these competing factors, I made some Energy2D simulations to see if they can help me. Figure 2 shows the first one that uses a block of object remaining at 20 °C to mimic a warm room and the surrounding environment of 0 °C, with a four-side wall in-between. Temperature sensors are placed at corners, as well as the middle point of a wall. The results show that the corners are indeed colder than other parts of the walls in a stable state. (Note that this simulation only involves heat diffusion, but adding radiation heat transfer should yield similar results.)

What about more complex shapes like an L-shaped wall that has both convex and concave junctions? Figure 3 shows the IR image of such a wall junction, taken from the outside of a house. In this image, interestingly enough, the convex edge appears to be colder, but the concave edge appears to be warmer!

The Energy2D simulation (Figure 4) shows a similar pattern like the IR image (Figure 3). The simulation results show that the temperature sensor placed near the concave edge outside the L-shape room does register a higher temperature than other sensors.

Now, the interesting question is, does the room lose more energy through a concave junction or a convex one? If we look at the IR image of the interior taken inside the house (Figure 1), we would probably say that the convex junction loses more energy. But if we look at the IR image of the exterior taken outside the house (Figure 3), we would probably say that the concave junction loses more energy.

Which statement is correct? I will leave that to you. You can download the Energy2D simulations from this link, play with them, and see if they help you figure out the answer. These simulations also include simulations of the reverse cases in which heat flows from the outside into the room (the summer condition).

The National Science Foundation funds large-scale applications of infrared cameras in schools


We are pleased to announce that the National Science Foundation has awarded the Concord Consortium, Next Step Living, and Virtual High School a grant of $1.2M to put innovative technologies such as infrared cameras into the hands of thousands of secondary students. This education-industry collaborative will create a technology-enhanced learning pathway from school to home and then to cognate careers, establishing thereby a data-rich testbed for developing and evaluating strategies for translating innovative technology experiences into consistent science learning and career awareness in different settings. While there have been studies on connecting science to everyday life or situating learning in professional scenarios to increase the relevance or authenticity of learning, the strategies of using industry-grade technologies to strengthen these connections have rarely been explored. In many cases, often due to the lack of experiences, resources, and curricular supports, industry technologies are simply used as showcases or demonstrations to give students a glimpse of how professionals use them to solve problems in the workplace.


Over the last few years, however, quite a number of industry technologies have become widely accessible to schools. For example, Autodesk has announced that their software products will be freely available to all students and teachers around the world. Another example is infrared cameras that I have been experimenting and blogging since 2010. Due to the continuous development of electronics and optics, what used to be a very expensive scientific instrument is now only a few hundred dollars, with the most affordable infrared camera falling below $200.

The funded project, called Next Step Learning, will be the largest-scale application of infrared camera in secondary schools -- in terms of the number of students that will be involved in the three-year project. We estimate that dozens of schools and thousands of students in Massachusetts will participate in this project. These students will use infrared cameras provided by the project to thermally inspect their own homes. The images in this blog post are some of the curious images I took in my own house using the FLIR ONE camera that is attached to an iPhone.

In the broader context, the Next Generation Science Standards (NGSS) envisions “three-dimensional learning” in which the learning of disciplinary core ideas and crosscutting concepts is integrated with science and engineering practices. A goal of the NGSS is to make science education more closely resemble the way scientists and engineers actually think and work. To accomplish this goal, an abundance of opportunities for students to practice science and engineering through solving authentic real-world problems will need to be created and researched. If these learning opportunities are meaningfully connected to current industry practices using industry-grade technologies, they can also increase students’ awareness of cognate careers, help them construct professional identities, and prepare them with knowledge and skills needed by employers, attaining thereby the goals of both science education and workforce development simultaneously. The Next Step Learning project will explore, test, and evaluate this strategy.

SimBuilding on iPad

SimBuilding (alpha version) is a 3D simulation game that we are developing to provide a more accessible and fun way to teach building science. A good reason that we are working on this game is because we want to teach building science concepts and practices to home energy professionals without having to invade someone's house or risk ruining it (well, we have to create or maintain some awful cases for teaching purposes, but what sane property owner would allow us to do so?). We also believe that computer graphics can be used to create some cool effects that demonstrate the ideas more clearly, providing complementary experiences to hands-on learning. The project is funded by the National Science Foundation to support technical education and workforce development.

SimBuilding is based on three.js, a powerful JavaScript-based graphics library that renders 3D scenes within the browser using WebGL. This allows it to run on a variety of devices, including the iPad (but not on a smartphone that has less horsepower, however). The photos in this blog post show how it looks on an iPad Mini, with multi-touch support for navigation and interaction.

In its current version, SimBuilding only supports virtual infrared thermography. The player walks around in a virtual house, challenged to correctly identify home energy problems in a house using a virtual IR camera. The virtual IR camera will show false-color IR images of a large number of sites when the player inspects them, from which the player must diagnose the causes of problems if he believes the house has been compromised by problems such as missing insulation, thermal bridge, air leakage, or water damage. In addition to the IR camera, a set of diagnostics tools is also provided, such as a blower-door system that is used to depressurize a house for identifying infiltration. We will also provide links to our Energy2D simulations should the player become interested in deepening their understanding about heat transfer concepts such as conduction, convection, and radiation.

SimBuilding is a collaborative project with New Mexico EnergySmart Academy at Santa Fe. A number of industry partners such as FLIR Systems and Building Science Corporation are also involved in this project. Our special thanks go to Jay Bowen of FLIR, who generously provided most of the IR images used to create the IR game scenes free of charge.

A stock-and-flow model for building thermal analysis

Figure 1. A stock-and-flow model of building energy.
Our Energy3D CAD software has two built-in simulation engines for performing solar energy analysis and building thermal analysis. I have extensively blogged about solar energy analysis using Energy3D. This article introduces building thermal analysis with Energy3D.

Figure 2. A colonial house.
The current version of the building energy simulation engine is based on a simple stock-and-flow model of building energy. Viewed from the perspective of system dynamics—a subject that studies the behavior of complex systems, the total thermal energy of a building is a stock and the energy gains or losses through its various components are flows. These gains or losses usually happen via the energy exchange between the building and the environment through the components. For instance, the solar radiation that shines into a building through its windows are inputs; the heat transfer through its walls may be inputs or outputs depending on the temperature difference between the inside and the outside.

Figure 3. The annual energy graph.
Figure1 illustrates how energy flows into and out of a building in the winter and summer, respectively. In order to maintain the temperature inside a building, the thermal energy it contains must remain constant—any shortage of thermal energy must be compensated and any excessive thermal energy must be removed. These are done through heating and air conditioning systems, which, together with ventilation systems, are commonly known as HVAC systems. Based on the stock-and-flow model, we can predict the energy cost of heating and air conditioning by summing up the energy flows in various processes of heat transfer, solar radiation, and energy generation over all the components of the building such as walls, windows, or roofs and over a certain period of time such as a day, a month, or a year.

Figure 2 shows the solar radiation heat map of a house and the distribution of the heat flux density over its building envelope. Figure 3 shows the results of the annual energy analysis for the house shown in Figure 2.

More information can be found in Chapter 3 of Energy3D's User Guide.