Tag Archives: games

Building data science fluency using games

The National Science Foundation has awarded the Concord Consortium a three-year Cyberlearning grant to develop and test new data science games for high school biology, chemistry, and physics, and research how learners conceive of and learn with data. The Data Science Games project builds on prior work, which led to the invention of a new genre of learning technology—a “data science game.”

The use of games for education is a growing field with significant promise for STEM learning. Games provide a powerful means of motivation and engagement, and align with many STEM learning goals. Data Science Games is making use of the data generated as students play digital games in a novel and creative way. When students play a data science game, their gameplay actions generate data—data that is essential to the game itself. To succeed at a data science game, students must visualize, understand, and properly apply the data their game playing has generated in order to “level up” and progress within the game. As they visualize and analyze the data, planning and plotting new, evolving strategies, students learn the fundamentals of data science.

The new data science games will be embedded in our open source Common Online Data Analysis Platform (CODAP). Data from the games will flow seamlessly into CODAP thanks to innovations that leverage advances in the interoperability of components embedded in browsers, new capabilities for data visualization using HTML5, and recent innovations in design of interfaces compatible with both PC-based browsers and touch devices.

Project research will investigate ways this new genre of educational technology can be integrated into classroom learning. We will identify and characterize learner perceptions of data, including how learners see flat, hierarchical, and network structures as emerging from realistic problems; questions learners ask with data; and learning trajectories for restructuring and visualization of data.

The project will also produce guidelines for making use of data science games across a range of grade levels and subject matter. Data Science Games will thus provide both models and templates of how to integrate learning of data science into existing content areas, helping to grow the next generation of data scientists.

Data Science Games Play Roshambo against the evil Dr. Markov (log in as guest). If you win, you can save Madeline the dog. Improve your odds by analyzing Markov’s moves in a graph.

Play Roshambo
(log in as guest)

Digital gaming will connect afterschool students with biotech mentors

Our nation’s future competitiveness and our citizens’ overall STEM literacy rely on our efforts to forge connections between the future workforce and the world of emerging STEM careers. Biotechnology, and genetics in particular, are rapidly advancing areas that will offer new jobs across the spectrum from technicians to scientists. A new $1.2 million National Science Foundation-funded project at the Concord Consortium will use Geniverse, an immersive digital game where students put genetics knowledge into action as they breed dragons, to help connect underserved students with local biotechnology professionals to strengthen student awareness of STEM careers.

East End House Students

Students from East End House enjoy collaborating on computer-based science activities.

Geniverse is our free, web-based software designed for high school biology that engages students in exploring heredity and genetics by breeding and studying virtual dragons. This game-like software allows students to undertake genetics experimentation with results that closely mimic real-world genetics. The new GeniConnect project will extend the gaming aspects of Geniverse and revise the content to more fully target middle school biology, introducing Geniverse to the afterschool environment.

The three-year GeniConnect project will develop and research a coherent series of student experiences in biotechnology and genetics involving game-based learning, industry mentoring, and hands-on laboratory work. Industry professionals from Biogen, Monsanto, and other firms will mentor afterschool students at East End House, a community center in East Cambridge, Massachusetts.

With researchers from Purdue University, we’ll explore how an immersive game and a connection to a real scientist can increase STEM knowledge, motivation, and career awareness of underserved youth. We will also develop and research a scalable model for STEM industry/afterschool partnerships, and produce a STEM Partnership Toolkit for the development of robust, educationally sound partnerships among industry professionals and afterschool programs. The Toolkit will be distributed to approximately 500 community-based organizations and afterschool programs nationally that are member organizations of the Alliance for Strong Families and Communities.

Geniverse Narrative

Beautiful graphics designed by FableVision Studios engage students in a compelling narrative. Students follow the arduous journey of their heroic character and suffering dragon to the Drake Breeder’s Guild.

Geniverse Lab

Students are welcomed into the Drake Breeder’s Guild where they will learn the tricks of the genetic trade. (Drakes are a model species that can help solve genetic mysteries in dragons, in much the same way as the mouse is a model species for human genetic disease.) Students are engaging in an authentic, experiment-driven approach to biology—in a fantastical world.

The National Science Foundation funds grant to pair intelligent tutoring system and Geniverse

Games, modeling, and simulation technologies hold great potential for helping students learn science concepts and engage with the practices of science, and these environments often capture meaningful data about student interactions. At the same time, intelligent tutoring systems (ITS) have undergone important advancements in providing support for individual student learning. Their complex statistical user models can identify student difficulties effectively and apply real-time probabilistic approaches to select options for assistance.

The Concord Consortium is proud to announce a four-year $1.5 million grant from the National Science Foundation that will pair Geniverse with robust intelligent tutoring systems to provide real-time classroom support. The new GeniGUIDE—Guiding Understanding via Information from Digital Environments—project will combine a deeply digital environment with an ITS core.

Geniverse is our free, web-based software for high school biology that engages students in exploring heredity and genetics by breeding and studying virtual dragons. Interactive models, powered by real genes, enable students to do simulated experiments that generate realistic and meaningful genetic data, all within an engaging, game-like context.

Geniverse Breeding

Students are introduced to drake traits and inheritance patterns, do experiments, look at data, draw tentative conclusions, and then test these conclusions with more experimentation. (Drakes are a model species that can help solve genetic mysteries in dragons, in much the same way as the mouse is a model species for human genetic disease.)

The GeniGUIDE project will improve student learning of genetics content by using student data from Geniverse. The software will continually monitor individual student actions, taking advantage of ITS capabilities to sense and guide students automatically through problems that have common, easily rectified issues. At the classroom level, it will make use of this same capability to help learners by connecting them to each other. When it identifies a student in need of assistance that transcends basic feedback, the system will connect the student with other peers in the classroom who have recently completed similar challenges, thus cultivating a supportive environment.

At the highest level, the software will leverage the rich data being collected about student actions and the system’s evolving models of student learning to form a valuable real-time resource for teachers. GeniGUIDE will identify students most in need of help at any given time and provide alerts to the teacher. The alerts will include contextual guidance about students’ past difficulties and most recent attempts as well as suggestions for pedagogical strategies most likely to aid individual students as they move forward.

The Concord Consortium and North Carolina State University will research this layered learner guidance system that aids students and informs interactions between student peers and between students and teachers. The project’s theoretical and practical advances promise to offer a deeper understanding of how diagnostic formative data can be used in technology-rich K-12 classrooms. As adaptive student learning environments find broad application in education, GeniGUIDE technologies will serve as an important foundation for the next generation of teacher support systems.

How not to Learn from Games

They’re the in thing, especially for teaching science. Everyone, it seems, is fascinated by the potential of educational games. They’re interactive and “multimedia,” they can adapt to individual students, they promote “authentic learning.” In short, they match the outsize expectations of a digital world. They’re definitely cool, but do they teach, and if so, what do they teach?

Full disclosure: I am an enthusiastic proponent of educational games. I created one called “ThinkerTools” so long ago that it ran on a Commodore 64 computer and had to be programmed in machine language to make it run fast enough. And, yes, I have no doubt that kids learn from such games. But do they learn what we think they’re learning? And how would we know if they were? Is it sufficient that they get better at the game? Surely not, else chess masters would be good at logic, and athletes would be physicists.

It is tempting to imagine that we can design educational games so cleverly that it would be impossible for a student to get good at the game without acquiring a deep understanding of whatever it is the game is trying to teach. Unfortunately, it doesn’t always work that way, as I learned from my experience with another educational game called GenScope.

GenScope was a multi-level genetics game. It linked processes at all different levels, from molecules to ecosystems, and we used it to create a bunch of engaging challenges for students. Our species of choice was dragons. We would show a dragon’s chromosomes, for instance, and ask students to figure out how to change its genes to make the dragon breathe fire. Later on, we would challenge them to breed a strain of blue dragons, or try to find two parent dragons that could only have two-legged offspring (hint: neither parent can have two legs).

We used the GenScope games in several high schools. We compared students who had used the games to others who had learned genetics by conventional means. To do this we designed a clever test that assessed precisely the reasoning skills we were trying to teach—and that we naively assumed were necessary to succeed at the games. Each time we did this, we found that the GenScope classes did no better on the test than the control group. Sometimes they did worse!

In the jargon of the trade the Holy Grail is “transfer,” and we weren’t getting much. Knowledge gained in one context is often difficult for the novice to apply to another one, even though to an expert the two situations appear very much alike.

To us, the researchers, the genetic principles behind the GenScope games were obvious, and their relevance to the questions on the test equally so. Clearly, that was not the case for the students, who became expert GenScope players but failed to apply what they learned to genetics.

There are ways around this impasse, of course, and I will describe a few in a future blog post. For the moment, though, let’s just keep in mind: there are lots of ways of getting good at an educational game. Only one of them involves learning what the game is supposed to teach.