Tag Archives: High-Adventure Science

Total solar eclipse and other awe-inspiring celestial activities

When you’re looking up at the solar eclipse on August 21 (wearing appropriate eye protection, of course), you might also be wondering: What else is out there? Black holes, dark energy, life forms? Are we really alone in the universe?

This is one of the great unanswered questions for scientists, which is why it’s in the 125th anniversary issue of Science dedicated to the topic of “What Don’t We Know” — a list of questions scientists still puzzle over.

At the Concord Consortium, we were fascinated by these questions, and it got us thinking … how can we generate that kind of curiosity and excitement among students, especially those who see science as dry facts and a long list of crazy vocabulary words like azimuth and hypernova and transneptunians?

The goal of our High-Adventure Science project is aimed at just that — engaging students in the same way scientists approach unanswered questions. In collaboration with National Geographic Education, we’ve developed six week-long units for middle and high school students on compelling, unanswered questions, including “Is there life in space?

This free online investigation helps students see how scientists use modern tools to locate planets around distant stars and explore the probability of finding extraterrestrial life. The curriculum incorporates dynamic computer models, including planet hunting models and Molecular Workbench models, real-world data, and and a video about planet hunters. What could be more cool?

As students search for habitable places beyond Earth, they hunt for planets using a model to explore how the brightness of a star changes over time as a planet orbits around it. This is known as the transit method. Students learn how the size of the planet and the angle of the orbit relative to the viewer each play a role in the light intensity that reaches Earth. This is similar to the solar eclipse when the moon will block the light of the sun as it transits between the sun and Earth.

Planet hunting model. Explore how combining data from the velocity of a star and the light intensity of a star can be used to find planets. Adjust the orbital angle (tilt) of the model by clicking in the grid area and dragging, so that you can see star movement in the velocity graph. As the planet passes in front of the star, watch what happens to the light intensity on the light intensity graph.

While the excitement of this eclipse may last just a few minutes (until the next total solar eclipse in North America in 2024), students can use High-Adventure Science to conduct other awe-inspiring celestial investigations, like the search for life in space!

 

 

Teaching about water quality and the importance of fresh water

A new resolution may overturn the Interior Department’s “Stream Protection Rule,” which required coal mining companies to monitor and test the quality of local streams and rivers before, during, or after mining operations. There is no better time than the present to learn about the importance of water issues in our communities and environment. Three Concord Consortium projects focus on teaching middle and high school students about their local watersheds, careers in environmental conservation, and freshwater availability, and all of them offer free, high-quality resources ideal for classrooms or informal education settings.

The Teaching Environmental Sustainability: Model My Watershed project, a collaborative research project at the Concord Consortium, Millersville University, and the Stroud Water Research Center, has developed curricula for environmental/geoscience disciplines for high school classrooms, using the Model My Watershed (MMW) web-based application. The curricula also integrate low-cost environmental sensors, allowing students to collect and upload their own data and compare them to data visualized on the new MMW.

In Supporting Collaborative Inquiry, Engineering, and Career Exploration with Water (Water SCIENCE), middle school students from southern Arizona, central valley California, southeastern Pennsylvania, and eastern Massachusetts complete hands-on science and engineering activities, receive guidance and instruction from undergraduate and graduate student mentors, interact online with STEM professionals, and learn about careers in environmental conservation and engineering while investigating their community’s local water resources.

Melinda Daniels, Associate Research Scientist at the Stroud Water Research Center, describes her work. Watch additional videos about water scientists and environmental conservationists »

And in our High-Adventure Science project, we’ve developed a unit entitled “Will there be enough fresh water?” Students explore the distribution and uses of fresh water on Earth. They run experiments with computational models to explore the flow of groundwater, investigate the relationship of groundwater levels to rainfall and human impact, and hear from a hydrologist working on the same question. Students think about how to assess the sustainability of water usage locally and globally while considering their own water usage. Use these great resources today to help students understand critical water issues!

Aquifers

Students use computational models to explore water extraction from aquifers in urban and rural areas.

Geological models to help students explore the Earth

Geoscience poses many questions. Why are there continents and oceans? How do mountains form? Why do volcanoes form in some areas and not others? What causes earthquakes to be more frequent in some areas than others? Why are oil, diamond, gold, and other deposits clustered in particular areas rather than being spread evenly across the world?

Teaching geoscience poses significant challenges. Experiments with Earth’s geology are impossible, and many of the natural processes that shape Earth, such as sedimentation, folding, and faulting, take place out of sight, over unimaginably long time periods. We think that technology has the potential help to transform how geoscience is taught and understood.

From the people who brought you High-Adventure Science comes the GEODE (Geological Models for Explorations of Dynamic Earth) project. Funded by the National Science Foundation, the new project aims to design dynamic, interactive, computer-based models and curricula to help students understand how Earth’s surface and subsurface features are shaped. As in the High-Adventure Science modules, GEODE modules will incorporate real-world data and computational models, with a focus on making scientific arguments based on evidence.

The GEODE  project, a partnership between the Concord Consortium and The Pennsylvania State University, held a kickoff brainstorming session Monday, September 27. Principal Investigator Amy Pallant and Co-PI Hee-Sun Lee, both of the Concord Consortium, and Co-PI Scott McDonald of Penn State organized a meeting to begin developing a plate tectonics model to accompany the recently developed Seismic Explorer.

In Seismic Explorer, students can see patterns of earthquake data, including magnitude, depth, location, and frequency.

In Seismic Explorer, students can see patterns of earthquake data, including magnitude, depth, location, and frequency.

seismicexplorer-cross-section

Students can make a cross-section to see a three-dimensional view of the earthquakes in an area.

Professional geologists, geoscience educators, and software developers reviewed the currently available models and simulations of plate motion, earthquake waves, sedimentation, folding, and faulting, and discussed ways to make these concepts accessible to middle and high school students.

We look forward to sharing more models and activities as they are developed over the next few years!

High-Adventure Science Partnership with National Geographic Education

We are excited to announce that the Concord Consortium’s High-Adventure Science modules are now available on the National Geographic Education website, thanks to a National Science Foundation-funded partnership with National Geographic Education. High-Adventure Science modules have been used by thousands of students so far, and we welcome the opportunity to share our modules with a wider audience of middle and high school teachers and students. All modules will continue to be available on the High-Adventure Science website.

High-Adventure Science: Bringing contemporary science into the classroom

Each week-long High-Adventure Science module is built around an important unanswered question in Earth or environmental science; topics include fresh water availability, climate change, the future of our energy sources, air quality, land management, and the search for life in the universe.

Throughout each module, students learn about the framing question, experiment with interactive computer models, analyze real world data, and attempt to answer the same questions as research scientists. We don’t expect that students will be able to answer the framing questions at the end of the module (after all, scientists are still working to answer them!); rather, we want to engage students in the process of doing science, building arguments around evidence and data and realizing that not knowing the answers (uncertainty) drives scientific progress.

To that end, each module (and associated pre- and post-tests) contains several scientific argumentation item sets. The argumentation item set, with multiple-choice and open-ended questions, prompts students to consider the strengths and weaknesses of the provided data (graphs, models, tables, or text). Our research has shown that, after using High-Adventure Science modules, students improve both their understanding of the science content and their scientific argumentation skills. Register for a free account on the High-Adventure Science portal for access to pre- and post-tests.

Expanded teacher resources through National Geographic Education

Partnering with National Geographic Education has allowed us to provide more support for teachers. On the National Geographic Education website, you’ll find in-depth teaching tips, background information, vocabulary definitions, and links to the standards (NSES, Common Core, ISTE, and NGSS) to which our curricula are aligned. Additionally, each module is linked to related resources in the National Geographic catalog, greatly expanding the resources available to both teachers and students.

Teachers have been excited about the models, real world data, and the argumentation prompts that get students to focus on the evidence when making a scientific claim. (You can hear directly from one of the High-Adventure Science field test teachers at NSTA!)

Come see us at NSTA in Nashville, TN, this week! Stop by the National Geographic booth or come to a presentation about using High-Adventure Science modules in your classroom:

  • “High-Adventure Science: Free Simulations Exploring Earth’s Systems and Sustainability” on Thursday, March 31, from 12:30-1:00 PM in Music City Center, 106A
  • “Integrating Literacy Standards in Science” on Sunday, April 3, from 8:00-9:00 AM in Music City Center, 209A

 

The National Science Foundation awards grant to study virtual worlds that afford knowledge integration

The Concord Consortium is proud to announce a new project funded by the National Science Foundation, “Towards virtual worlds that afford knowledge integration across project challenges and disciplines.” Principal Investigator Janet Kolodner and Co-PI Amy Pallant will explore how the design of project challenges and the contexts in which they are carried out can support knowledge integration, sustained engagement, and excitement. The goal is to learn how to foster knowledge integration across disciplines when learners encounter and revisit phenomena and processes across several challenges.

Aerial Geography and Air QualityIn this model, students explore the effect of wind direction and geography on air quality as they place up to four smokestacks in the model.

We envision an educational system where learners regularly engage in project-based education within and across disciplines, and in and out of school. We believe that, with such an educational approach, making connections across learning experiences should be possible in new and unexplored ways. If challenges are framed appropriately and their associated figured worlds (real and virtual) and scaffolding are designed to afford it, such education can help learners integrate the content and practices they are learning across projects and across disciplines. “Towards virtual worlds” will help move us towards this vision.

This one-year exploratory project focuses on the possibilities for knowledge integration when middle schoolers who have achieved water ecosystems challenges later attempt an air quality challenge. Some students will engage with EcoMUVE, where learners try to understand why the fish in a pond are dying, and others will engage with Living Together from Project-Based Inquiry Science (PBIS), where learners advise about regulations that should be put in place before a new industry is allowed to move into a town. A subset of these students will then encounter specially crafted air quality challenges based on High-Adventure Science activities and models. These, we hope, will evoke reminders of experiences during their water ecosystem work. We will examine what learners are reminded of, the richness of their memories, and the appeal for learners of applying what they are learning about air quality to better address the earlier water ecology challenge. Research will be carried out in Boston area schools.

Sideview Pollution Control Devices In this model, students explore the effects of installing pollution control devices, such as scrubbers and catalytic converters, on power plants and cars. Students monitor the level of primary pollutants (brown line) and secondary pollutants (orange line) in the model over time, via the graph.

The project will investigate:

  1. What conditions give rise to intense and sustained emotional engagement?
  2. What is remembered by learners when they have (enthusiastically) engaged with a challenge in a virtual figured world and reflected on it in ways appropriate to learning, and what seems to affect what is remembered?
  3. How does a challenge and/or virtual world need to be configured so that learners notice—while not being overwhelmed by—phenomena not central to the challenge but still important to making connections with content outside the challenge content?

Our exploration will help us understand more about the actual elements in the experiences of learners that lead to different emotional responses and the impacts of such responses on their memory making and desires.

Lessons we learn about conditions under which learners form rich memories and want to go back and improve their earlier solutions to challenges will form some of the foundations informing how to design virtual worlds and project challenges with affordances for supporting knowledge integration across projects and disciplines. Exemplar virtual worlds and associated project challenges will inform design principles for the design and use of a new virtual world genre — one with characteristics that anticipate cross-project and cross-discipline knowledge integration and ready learners for future connection making and knowledge deepening.