Tag Archives: models

Geological models to help students explore the Earth

Geoscience poses many questions. Why are there continents and oceans? How do mountains form? Why do volcanoes form in some areas and not others? What causes earthquakes to be more frequent in some areas than others? Why are oil, diamond, gold, and other deposits clustered in particular areas rather than being spread evenly across the world?

Teaching geoscience poses significant challenges. Experiments with Earth’s geology are impossible, and many of the natural processes that shape Earth, such as sedimentation, folding, and faulting, take place out of sight, over unimaginably long time periods. We think that technology has the potential help to transform how geoscience is taught and understood.

From the people who brought you High-Adventure Science comes the GEODE (Geological Models for Explorations of Dynamic Earth) project. Funded by the National Science Foundation, the new project aims to design dynamic, interactive, computer-based models and curricula to help students understand how Earth’s surface and subsurface features are shaped. As in the High-Adventure Science modules, GEODE modules will incorporate real-world data and computational models, with a focus on making scientific arguments based on evidence.

The GEODE  project, a partnership between the Concord Consortium and The Pennsylvania State University, held a kickoff brainstorming session Monday, September 27. Principal Investigator Amy Pallant and Co-PI Hee-Sun Lee, both of the Concord Consortium, and Co-PI Scott McDonald of Penn State organized a meeting to begin developing a plate tectonics model to accompany the recently developed Seismic Explorer.

In Seismic Explorer, students can see patterns of earthquake data, including magnitude, depth, location, and frequency.

In Seismic Explorer, students can see patterns of earthquake data, including magnitude, depth, location, and frequency.

seismicexplorer-cross-section

Students can make a cross-section to see a three-dimensional view of the earthquakes in an area.

Professional geologists, geoscience educators, and software developers reviewed the currently available models and simulations of plate motion, earthquake waves, sedimentation, folding, and faulting, and discussed ways to make these concepts accessible to middle and high school students.

We look forward to sharing more models and activities as they are developed over the next few years!

Share and embed—easily!

One of the key features of our Next-Generation Molecular Workbench is the ability to easily share and embed interactives in blog posts, learning management systems, emails and more—wherever you can paste a weblink or HTML code. Just two simple steps will have you sharing your favorite interactives with all your friends and colleagues in no time flat!

  1. Click the Share link at the top of an interactive.
  2. Copy and paste the link into Facebook, Google+, Twitter, Pinterest or wherever you want to share the interactive.

Want to embed the interactive in your own blog or web page instead?

  1. Click the Share link at the top of an interactive.
  2. Copy the HTML and paste the iframe code where you want the interactive to appear.

Sharing and embedding Next-Generation Molecular Workbench interactives

Learn more about how easy it is to share interactives.

We want to make it easy for you to learn and teach with accurate scientific models.  We’ve gotten it down to two steps. Now it’s up to you to share your favorite interactives far and wide. 🙂

Explore currently available interactives.

Share with us: which are your favorite interactives and why? What interactives do you want to see?

 

Better than an Apple, a Gift for Teachers

Thanks to everyone who entered our Suggest-a-Model contest. We always enjoy hearing from teachers and love to help with hard-to-teach science concepts. If you haven’t already, please vote for the model you’d most like us to build.

To Vote

1) Go to our Facebook page (you like us on Facebook already, right?)

2) Look for the poll pinned to the top left of the page’s wall

3) Click on the idea you like most to cast your vote

Our goal is to build a custom computer model to help teach a complex, science, math or engineering concept suggested by real teachers, like YOU! We know all too well the awkwardness of jumping up and down and waving your hands to model the behavior of molecules or dancing around the classroom to model photosynthesis.

We received a lot of great ideas and whittled the list down to three concepts.

One finalist told us that her students “are always making fun of me looking like I am doing a swim stroke in front of the class” when she tries to model convection! She’d love a new set of heat transfer models!

Another finalist is looking for a model of nutrient runoff into coastal waters and how that stimulates harmful algal bloom production. Concerned about the environment? Show your support for this model!

A model of meiosis and genetic recombination (known as crossing over, when exchanges of chromosome portions occurs) also made it to the top three. If you teach biology or know a student who’s taking Bio, this may be the one for you.

Voting ends on November 30th, so please go to our Facebook page and vote now.

After voting is over, we’ll announce the winner and get started on building the model. And once it’s done, it’ll be available for free to everybody. Win-win all around! If you want to know when it’s available, be sure to like us on Facebook, follow us on Twitter and subscribe to our mailing list and RSS feed. We’ll be posting about it through all those channels.

But don’t wait to use our models. Check out our Activity Finder and Classic MW. These free resources contain lots of great examples of the models we already have available for science, math and engineering teachers at all grades. You’re sure to find an activity (or two or three!) that covers other difficult-to-teach concepts. Enjoy!