Tag Archives: Stirling Engine

Modeling parabolic dish Stirling engines in Energy3D

Fig. 1: A parabolic dish Stirling engine
Fig. 2: The Tooele Army Depot solar project in Utah
A parabolic dish Stirling engine is a concentrated solar power (CSP) generating system that consists of a stand-alone parabolic dish reflector focusing sunlight onto a receiver positioned at the parabolic dish's focal point. The dish tracks the sun along two axes to ensure that it always faces the sun for the maximal input (for photovoltaic solar panels, this type of tracker is typically known as dual-axis azimuth-altitude tracker, or AADAT). The working fluid in the receiver is heated to 250–700 °C and then used by a Stirling engine to generate power. A Stirling engine is a heat engine that operates by cyclic compression and expansion of air or other gas (the working fluid) at different temperatures, such that there is a net conversion of thermal energy to mechanical work. The amazing Stirling engine was invented 201 years ago(!). You can see an infrared view of a Stirling engine at work in a blog article I posted early last year.

Although parabolic dish systems have not been deployed at a large scale -- compared with its parabolic trough cousin and possibly due to the same reason that AADAT is not popular in photovoltaic solar farms because of its higher installation and maintenance costs, they nonetheless provide solar-to-electric efficiency above 30%, higher than any photovoltaic solar panel in the market as of 2017.

In Version 7.2.2 of Energy3D, I have added the modeling capabilities for designing and analyzing parabolic dish engines (Figure 1). Figure 2 shows an Energy3D model of the Tooele Army Depot project in Utah. The solar power plant consists of 429 dishes, each having an aperture area of 35 square meters and outputting 3.5 kW of power.

Fig. 3: All four types of real-world CSP projects modeled in Energy3D
With this new addition, all four types of main CSP technologies -- solar towers, linear Fresnel reflectors, parabolic troughs, and parabolic dishes, have been supported in Energy3D (Figure 3). Together with its advancing ability to model photovoltaic solar power, these new features have made Energy3D one of the most comprehensive and powerful solar design and simulation software tools in the world, delivering my promise made about a year ago to model all major solar power engineering solutions in Energy3D.

An afterthought: We can regard a power tower as a large Fresnel version of a parabolic dish and the compact linear Fresnel reflectors as a large Fresnel version of a parabolic trough. Hence, all four concentrated solar power solutions are based on parabolic reflection, but with different nonimaging optical designs that strike the balance between cost and efficiency.

An infrared investigation on a Stirling engine

Figure 1
The year 2016 marks the 200th anniversary of an important invention of Robert Stirling -- the Stirling engine. So I thought I should start this year's blogging with a commemoration article about this truly ingenious invention.

A Stirling engine is a closed-cycle heat engine that operates by cyclic compression and expansion of air or other gas by a temperature difference across the engine. A Stirling engine is able to convert thermal energy into mechanical work.

You can buy an awesome toy Stirling engine from Amazon (perhaps next Christmas's gift for some inquisitive minds). If you put it on top of a cup of hot water, this amazing machine will just run until the hot water cools down to the room temperature.

Figure 2
Curious about whether the Stirling circle would actually accelerate the cooling process, I filled hot water into two identical mugs and covered one of them with the Stirling engine. Then I started the engine and observed what happened to the temperature through an IR camera. It turned out that the mug covered by the engine maintained a temperature about 10 °C higher than the open mug in about 30 minutes of observation time. If you have a chance to do this experiment, you probably would be surprised. The flying wheel of the Stirling engine seems to be announcing that it is working very hard by displaying fast spinning and making a lot of noise. But all that energy, visual and audible as it is, is no match to the thermal energy lost through evaporation of water from the open hot mug (Figure 1).

How about comparing the Stirling engine with heat transfer? I found a metal box that has approximately the same size and same thickness with our Stirling engine. I refilled the hot water to the two mugs and covered one with the metal box and the other with the Stirling engine. Then I started the engine and tracked their temperatures through the IR camera. It turned out that the rates of heat loss from the two mugs were about the same in about 30 minutes of observation. What this really means is that the energy that drove the engine was actually very small compared with the thermal energy that is lost to the environment through heat transfer (Figure 2).

This is understandable because the speed of the flying wheel is only a small fraction of the average speed of molecules (which is about the speed of sound or higher). This investigation also suggests that the Stirling engine is very efficient. Had we insulated the mug, it would have run for hours.